Image reconstruction by domain-transform manifold learning

迭代重建 计算机科学 人工智能 计算机视觉 深度学习 模式识别(心理学)
作者
Bo Zhu,Jeremiah Zhe Liu,Stephen Cauley,Bruce R. Rosen,Matthew S. Rosen
出处
期刊:Nature [Springer Nature]
卷期号:555 (7697): 487-492 被引量:1591
标识
DOI:10.1038/nature25988
摘要

Image reconstruction plays a critical role in the implementation of all contemporary imaging modalities across the physical and life sciences including optical, MRI, CT, PET, and radio astronomy. During an image acquisition, the sensor encodes an intermediate representation of an object in the sensor domain, which is subsequently reconstructed into an image by an inversion of the encoding function. Image reconstruction is challenging because analytic knowledge of the inverse transform may not exist a priori, especially in the presence of sensor non-idealities and noise. Thus, the standard reconstruction approach involves approximating the inverse function with multiple ad hoc stages in a signal processing chain whose composition depends on the details of each acquisition strategy, and often requires expert parameter tuning to optimize reconstruction performance. We present here a unified framework for image reconstruction, AUtomated TransfOrm by Manifold APproximation (AUTOMAP), which recasts image reconstruction as a data-driven, supervised learning task that allows a mapping between sensor and image domain to emerge from an appropriate corpus of training data. We implement AUTOMAP with a deep neural network and exhibit its flexibility in learning reconstruction transforms for a variety of MRI acquisition strategies, using the same network architecture and hyperparameters. We further demonstrate its efficiency in sparsely representing transforms along low-dimensional manifolds, resulting in superior immunity to noise and reconstruction artifacts compared with conventional handcrafted reconstruction methods. In addition to improving the reconstruction performance of existing acquisition methodologies, we anticipate accelerating the discovery of new acquisition strategies across modalities as the burden of reconstruction becomes lifted by AUTOMAP and learned-reconstruction approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
石石刘完成签到 ,获得积分10
2秒前
顺利毕业完成签到,获得积分10
3秒前
端庄冷荷完成签到 ,获得积分10
3秒前
3秒前
haoliu完成签到,获得积分10
3秒前
3秒前
阳光完成签到,获得积分10
4秒前
小飞完成签到,获得积分20
5秒前
Zzz完成签到,获得积分10
5秒前
5秒前
5秒前
Akim应助TRISTE采纳,获得10
6秒前
6秒前
shentucc完成签到,获得积分20
6秒前
6秒前
7秒前
SY完成签到,获得积分10
7秒前
龙晴完成签到 ,获得积分10
8秒前
8秒前
9秒前
1234发布了新的文献求助10
9秒前
10秒前
10秒前
10秒前
所就欧克发布了新的文献求助10
10秒前
11秒前
瞳瞳爱吃巴斯克完成签到 ,获得积分10
12秒前
13秒前
月星发布了新的文献求助10
13秒前
赘婿应助赫连紫采纳,获得10
13秒前
13秒前
英吉利25发布了新的文献求助10
13秒前
爱学习的医学小白完成签到 ,获得积分10
14秒前
Fortune发布了新的文献求助10
14秒前
yuanbenshimao完成签到 ,获得积分10
14秒前
公龟应助高皮皮采纳,获得10
14秒前
可靠伟泽发布了新的文献求助10
15秒前
15秒前
strama发布了新的文献求助10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608292
求助须知:如何正确求助?哪些是违规求助? 4692876
关于积分的说明 14875899
捐赠科研通 4717214
什么是DOI,文献DOI怎么找? 2544162
邀请新用户注册赠送积分活动 1509147
关于科研通互助平台的介绍 1472809