Image reconstruction by domain-transform manifold learning

迭代重建 计算机科学 人工智能 计算机视觉 深度学习 模式识别(心理学)
作者
Bo Zhu,Jeremiah Zhe Liu,Stephen F. Cauley,Bruce R. Rosen,Matthew S. Rosen
出处
期刊:Nature [Nature Portfolio]
卷期号:555 (7697): 487-492 被引量:1473
标识
DOI:10.1038/nature25988
摘要

Image reconstruction plays a critical role in the implementation of all contemporary imaging modalities across the physical and life sciences including optical, MRI, CT, PET, and radio astronomy. During an image acquisition, the sensor encodes an intermediate representation of an object in the sensor domain, which is subsequently reconstructed into an image by an inversion of the encoding function. Image reconstruction is challenging because analytic knowledge of the inverse transform may not exist a priori, especially in the presence of sensor non-idealities and noise. Thus, the standard reconstruction approach involves approximating the inverse function with multiple ad hoc stages in a signal processing chain whose composition depends on the details of each acquisition strategy, and often requires expert parameter tuning to optimize reconstruction performance. We present here a unified framework for image reconstruction, AUtomated TransfOrm by Manifold APproximation (AUTOMAP), which recasts image reconstruction as a data-driven, supervised learning task that allows a mapping between sensor and image domain to emerge from an appropriate corpus of training data. We implement AUTOMAP with a deep neural network and exhibit its flexibility in learning reconstruction transforms for a variety of MRI acquisition strategies, using the same network architecture and hyperparameters. We further demonstrate its efficiency in sparsely representing transforms along low-dimensional manifolds, resulting in superior immunity to noise and reconstruction artifacts compared with conventional handcrafted reconstruction methods. In addition to improving the reconstruction performance of existing acquisition methodologies, we anticipate accelerating the discovery of new acquisition strategies across modalities as the burden of reconstruction becomes lifted by AUTOMAP and learned-reconstruction approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
在水一方应助Wdd采纳,获得10
刚刚
yiyi完成签到,获得积分10
刚刚
火狐狸kc完成签到,获得积分10
1秒前
SwampMan完成签到 ,获得积分10
2秒前
Seiswan完成签到,获得积分10
2秒前
2秒前
研友_nPPdan完成签到,获得积分10
3秒前
陈明宇关注了科研通微信公众号
3秒前
3秒前
yanm完成签到,获得积分10
3秒前
cistronic完成签到,获得积分10
4秒前
无语的沛春完成签到,获得积分10
4秒前
老刘完成签到,获得积分10
5秒前
小橙子完成签到,获得积分10
5秒前
闪闪的发布了新的文献求助10
5秒前
chen完成签到,获得积分10
5秒前
puff完成签到,获得积分10
5秒前
6秒前
frank完成签到,获得积分10
7秒前
Yuan完成签到,获得积分10
7秒前
PG完成签到 ,获得积分10
7秒前
YRRRR完成签到 ,获得积分10
8秒前
朴素青寒发布了新的文献求助10
8秒前
Jeremy King发布了新的文献求助10
8秒前
天Q完成签到,获得积分10
8秒前
9秒前
weixin112233完成签到,获得积分10
9秒前
7777完成签到,获得积分20
10秒前
小葡萄完成签到 ,获得积分10
10秒前
10秒前
10秒前
123完成签到,获得积分10
10秒前
温柔寒梅完成签到 ,获得积分10
11秒前
11秒前
11秒前
阳光的紫丝完成签到 ,获得积分10
11秒前
开心的白昼完成签到,获得积分10
11秒前
一只蓉馍馍完成签到,获得积分10
11秒前
一一发布了新的文献求助10
12秒前
王子心完成签到,获得积分10
12秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
徐淮辽南地区新元古代叠层石及生物地层 500
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015970
求助须知:如何正确求助?哪些是违规求助? 3555964
关于积分的说明 11319479
捐赠科研通 3289040
什么是DOI,文献DOI怎么找? 1812373
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812044