已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Image reconstruction by domain-transform manifold learning

迭代重建 计算机科学 人工智能 计算机视觉 深度学习 模式识别(心理学)
作者
Bo Zhu,Jeremiah Zhe Liu,Stephen F. Cauley,Bruce R. Rosen,Matthew S. Rosen
出处
期刊:Nature [Springer Nature]
卷期号:555 (7697): 487-492 被引量:1473
标识
DOI:10.1038/nature25988
摘要

Image reconstruction plays a critical role in the implementation of all contemporary imaging modalities across the physical and life sciences including optical, MRI, CT, PET, and radio astronomy. During an image acquisition, the sensor encodes an intermediate representation of an object in the sensor domain, which is subsequently reconstructed into an image by an inversion of the encoding function. Image reconstruction is challenging because analytic knowledge of the inverse transform may not exist a priori, especially in the presence of sensor non-idealities and noise. Thus, the standard reconstruction approach involves approximating the inverse function with multiple ad hoc stages in a signal processing chain whose composition depends on the details of each acquisition strategy, and often requires expert parameter tuning to optimize reconstruction performance. We present here a unified framework for image reconstruction, AUtomated TransfOrm by Manifold APproximation (AUTOMAP), which recasts image reconstruction as a data-driven, supervised learning task that allows a mapping between sensor and image domain to emerge from an appropriate corpus of training data. We implement AUTOMAP with a deep neural network and exhibit its flexibility in learning reconstruction transforms for a variety of MRI acquisition strategies, using the same network architecture and hyperparameters. We further demonstrate its efficiency in sparsely representing transforms along low-dimensional manifolds, resulting in superior immunity to noise and reconstruction artifacts compared with conventional handcrafted reconstruction methods. In addition to improving the reconstruction performance of existing acquisition methodologies, we anticipate accelerating the discovery of new acquisition strategies across modalities as the burden of reconstruction becomes lifted by AUTOMAP and learned-reconstruction approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
认真小海豚完成签到,获得积分10
1秒前
切奇莉亚完成签到,获得积分10
6秒前
十几完成签到,获得积分20
8秒前
10秒前
Yolo完成签到,获得积分10
15秒前
阿牛奶发布了新的文献求助10
15秒前
上官若男应助火星上白安采纳,获得10
16秒前
16秒前
17秒前
Delight完成签到 ,获得积分10
18秒前
guard发布了新的文献求助10
22秒前
Owen应助阿牛奶采纳,获得10
24秒前
田様应助Ecc采纳,获得10
25秒前
从容芮应助有热心愿意采纳,获得10
26秒前
28秒前
搜集达人应助guard采纳,获得30
32秒前
小晋完成签到 ,获得积分10
33秒前
37秒前
巴拉巴拉巴拉完成签到,获得积分10
38秒前
39秒前
Gavin发布了新的文献求助10
39秒前
天天快乐应助wwho_O采纳,获得10
42秒前
Ecc发布了新的文献求助10
42秒前
42秒前
43秒前
闪闪善若完成签到 ,获得积分10
44秒前
BY发布了新的文献求助10
47秒前
小凉完成签到 ,获得积分10
52秒前
叶楠完成签到,获得积分10
53秒前
Deila完成签到 ,获得积分0
53秒前
53秒前
54秒前
orixero应助BY采纳,获得30
55秒前
阿牛奶发布了新的文献求助10
56秒前
LynSharonRose发布了新的文献求助20
58秒前
火星上白安完成签到,获得积分10
58秒前
草莓啵啵兔完成签到 ,获得积分10
1分钟前
1分钟前
十几发布了新的文献求助10
1分钟前
1分钟前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3154769
求助须知:如何正确求助?哪些是违规求助? 2805639
关于积分的说明 7865397
捐赠科研通 2463783
什么是DOI,文献DOI怎么找? 1311600
科研通“疑难数据库(出版商)”最低求助积分说明 629647
版权声明 601832