亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Image reconstruction by domain-transform manifold learning

迭代重建 计算机科学 人工智能 计算机视觉 深度学习 模式识别(心理学)
作者
Bo Zhu,Jeremiah Zhe Liu,Stephen Cauley,Bruce R. Rosen,Matthew S. Rosen
出处
期刊:Nature [Springer Nature]
卷期号:555 (7697): 487-492 被引量:1591
标识
DOI:10.1038/nature25988
摘要

Image reconstruction plays a critical role in the implementation of all contemporary imaging modalities across the physical and life sciences including optical, MRI, CT, PET, and radio astronomy. During an image acquisition, the sensor encodes an intermediate representation of an object in the sensor domain, which is subsequently reconstructed into an image by an inversion of the encoding function. Image reconstruction is challenging because analytic knowledge of the inverse transform may not exist a priori, especially in the presence of sensor non-idealities and noise. Thus, the standard reconstruction approach involves approximating the inverse function with multiple ad hoc stages in a signal processing chain whose composition depends on the details of each acquisition strategy, and often requires expert parameter tuning to optimize reconstruction performance. We present here a unified framework for image reconstruction, AUtomated TransfOrm by Manifold APproximation (AUTOMAP), which recasts image reconstruction as a data-driven, supervised learning task that allows a mapping between sensor and image domain to emerge from an appropriate corpus of training data. We implement AUTOMAP with a deep neural network and exhibit its flexibility in learning reconstruction transforms for a variety of MRI acquisition strategies, using the same network architecture and hyperparameters. We further demonstrate its efficiency in sparsely representing transforms along low-dimensional manifolds, resulting in superior immunity to noise and reconstruction artifacts compared with conventional handcrafted reconstruction methods. In addition to improving the reconstruction performance of existing acquisition methodologies, we anticipate accelerating the discovery of new acquisition strategies across modalities as the burden of reconstruction becomes lifted by AUTOMAP and learned-reconstruction approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
48秒前
1分钟前
Setlla完成签到 ,获得积分10
1分钟前
1分钟前
小东西发布了新的文献求助10
1分钟前
1分钟前
juanwu发布了新的文献求助10
1分钟前
木昆完成签到 ,获得积分10
2分钟前
Yuki完成签到 ,获得积分10
3分钟前
3分钟前
4分钟前
天马发布了新的文献求助10
4分钟前
kuoping完成签到,获得积分0
4分钟前
5分钟前
罗乐天完成签到,获得积分10
5分钟前
罗乐天发布了新的文献求助10
5分钟前
天马完成签到,获得积分20
6分钟前
qq发布了新的文献求助10
6分钟前
6分钟前
7分钟前
老石完成签到 ,获得积分10
7分钟前
浮游应助美美采纳,获得10
8分钟前
酷波er应助broky采纳,获得10
8分钟前
Criminology34举报桀庚求助涉嫌违规
8分钟前
8分钟前
西瓜发布了新的文献求助10
8分钟前
8分钟前
可爱的函函应助西瓜采纳,获得10
8分钟前
8分钟前
科研通AI2S应助科研通管家采纳,获得10
8分钟前
8分钟前
broky发布了新的文献求助10
8分钟前
sherry完成签到 ,获得积分10
8分钟前
broky完成签到,获得积分10
8分钟前
Double发布了新的文献求助30
8分钟前
8分钟前
9分钟前
9分钟前
白面包不吃鱼完成签到 ,获得积分10
9分钟前
9分钟前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertebrate Palaeontology, 5th Edition 530
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5346748
求助须知:如何正确求助?哪些是违规求助? 4481156
关于积分的说明 13947333
捐赠科研通 4379158
什么是DOI,文献DOI怎么找? 2406182
邀请新用户注册赠送积分活动 1398752
关于科研通互助平台的介绍 1371661