Image reconstruction by domain-transform manifold learning

迭代重建 计算机科学 人工智能 计算机视觉 深度学习 模式识别(心理学)
作者
Bo Zhu,Jeremiah Zhe Liu,Stephen Cauley,Bruce R. Rosen,Matthew S. Rosen
出处
期刊:Nature [Springer Nature]
卷期号:555 (7697): 487-492 被引量:1591
标识
DOI:10.1038/nature25988
摘要

Image reconstruction plays a critical role in the implementation of all contemporary imaging modalities across the physical and life sciences including optical, MRI, CT, PET, and radio astronomy. During an image acquisition, the sensor encodes an intermediate representation of an object in the sensor domain, which is subsequently reconstructed into an image by an inversion of the encoding function. Image reconstruction is challenging because analytic knowledge of the inverse transform may not exist a priori, especially in the presence of sensor non-idealities and noise. Thus, the standard reconstruction approach involves approximating the inverse function with multiple ad hoc stages in a signal processing chain whose composition depends on the details of each acquisition strategy, and often requires expert parameter tuning to optimize reconstruction performance. We present here a unified framework for image reconstruction, AUtomated TransfOrm by Manifold APproximation (AUTOMAP), which recasts image reconstruction as a data-driven, supervised learning task that allows a mapping between sensor and image domain to emerge from an appropriate corpus of training data. We implement AUTOMAP with a deep neural network and exhibit its flexibility in learning reconstruction transforms for a variety of MRI acquisition strategies, using the same network architecture and hyperparameters. We further demonstrate its efficiency in sparsely representing transforms along low-dimensional manifolds, resulting in superior immunity to noise and reconstruction artifacts compared with conventional handcrafted reconstruction methods. In addition to improving the reconstruction performance of existing acquisition methodologies, we anticipate accelerating the discovery of new acquisition strategies across modalities as the burden of reconstruction becomes lifted by AUTOMAP and learned-reconstruction approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
光亮的元槐完成签到,获得积分10
1秒前
flymove完成签到,获得积分10
1秒前
democienceek完成签到,获得积分10
1秒前
cheng发布了新的文献求助10
2秒前
化合物来完成签到,获得积分10
2秒前
学术骗子小刚完成签到,获得积分0
2秒前
陈谨完成签到 ,获得积分10
2秒前
2秒前
情怀应助灰太狼大王采纳,获得10
2秒前
酷酷珠完成签到,获得积分10
3秒前
ziyu完成签到,获得积分10
3秒前
英姑应助鱼与渔采纳,获得30
3秒前
芋头读文献完成签到,获得积分10
3秒前
九九完成签到,获得积分10
4秒前
smh完成签到,获得积分10
5秒前
贝肯尼切黄瓜完成签到,获得积分10
5秒前
汉堡包应助JLIN_采纳,获得10
6秒前
hqhbj77完成签到,获得积分10
6秒前
Jankin完成签到,获得积分10
7秒前
你好夏天完成签到 ,获得积分10
7秒前
欧皇发布了新的文献求助30
7秒前
无花果应助小高采纳,获得30
7秒前
Wen929完成签到 ,获得积分10
7秒前
Python_Liu完成签到 ,获得积分10
8秒前
健壮羊青完成签到,获得积分10
8秒前
Mingda完成签到,获得积分10
8秒前
yier完成签到,获得积分10
8秒前
顾矜应助可爱的小福宝采纳,获得10
8秒前
louiselong完成签到,获得积分10
8秒前
wzy完成签到,获得积分10
9秒前
lalala完成签到,获得积分10
9秒前
melisa发布了新的文献求助10
9秒前
xlk2222完成签到,获得积分10
10秒前
xuanku发布了新的文献求助10
10秒前
Owen应助qwer1234采纳,获得10
10秒前
小夏完成签到,获得积分10
11秒前
大模型应助yyx采纳,获得10
11秒前
41完成签到,获得积分10
11秒前
动听衬衫完成签到 ,获得积分10
12秒前
自觉白开水完成签到,获得积分10
12秒前
高分求助中
晶体学对称群—如何读懂和应用国际晶体学表 1500
Problem based learning 1000
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
Numerical controlled progressive forming as dieless forming 400
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5387611
求助须知:如何正确求助?哪些是违规求助? 4509621
关于积分的说明 14032074
捐赠科研通 4420457
什么是DOI,文献DOI怎么找? 2428263
邀请新用户注册赠送积分活动 1420857
关于科研通互助平台的介绍 1400038