Image reconstruction by domain-transform manifold learning

迭代重建 计算机科学 人工智能 计算机视觉 深度学习 模式识别(心理学)
作者
Bo Zhu,Jeremiah Zhe Liu,Stephen Cauley,Bruce R. Rosen,Matthew S. Rosen
出处
期刊:Nature [Springer Nature]
卷期号:555 (7697): 487-492 被引量:1591
标识
DOI:10.1038/nature25988
摘要

Image reconstruction plays a critical role in the implementation of all contemporary imaging modalities across the physical and life sciences including optical, MRI, CT, PET, and radio astronomy. During an image acquisition, the sensor encodes an intermediate representation of an object in the sensor domain, which is subsequently reconstructed into an image by an inversion of the encoding function. Image reconstruction is challenging because analytic knowledge of the inverse transform may not exist a priori, especially in the presence of sensor non-idealities and noise. Thus, the standard reconstruction approach involves approximating the inverse function with multiple ad hoc stages in a signal processing chain whose composition depends on the details of each acquisition strategy, and often requires expert parameter tuning to optimize reconstruction performance. We present here a unified framework for image reconstruction, AUtomated TransfOrm by Manifold APproximation (AUTOMAP), which recasts image reconstruction as a data-driven, supervised learning task that allows a mapping between sensor and image domain to emerge from an appropriate corpus of training data. We implement AUTOMAP with a deep neural network and exhibit its flexibility in learning reconstruction transforms for a variety of MRI acquisition strategies, using the same network architecture and hyperparameters. We further demonstrate its efficiency in sparsely representing transforms along low-dimensional manifolds, resulting in superior immunity to noise and reconstruction artifacts compared with conventional handcrafted reconstruction methods. In addition to improving the reconstruction performance of existing acquisition methodologies, we anticipate accelerating the discovery of new acquisition strategies across modalities as the burden of reconstruction becomes lifted by AUTOMAP and learned-reconstruction approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
TANG完成签到,获得积分10
刚刚
jiali发布了新的文献求助10
1秒前
1秒前
1秒前
筱xiao发布了新的文献求助10
1秒前
小晓俊关注了科研通微信公众号
1秒前
gyr完成签到,获得积分10
2秒前
领导范儿应助夜染采纳,获得10
2秒前
novi完成签到,获得积分10
2秒前
Alexander完成签到,获得积分10
2秒前
minl发布了新的文献求助10
3秒前
yzee发布了新的文献求助10
3秒前
1111发布了新的文献求助10
3秒前
iNk应助jinyu采纳,获得10
3秒前
赵蔚蓝发布了新的文献求助10
3秒前
4秒前
心木完成签到 ,获得积分10
4秒前
坦率的山菡完成签到,获得积分10
4秒前
ww完成签到,获得积分10
4秒前
yzj完成签到 ,获得积分10
4秒前
慕青应助Irena采纳,获得10
5秒前
5秒前
Eagler67完成签到,获得积分20
5秒前
6秒前
6秒前
6秒前
昔年若许完成签到,获得积分10
7秒前
7秒前
幽默枫完成签到,获得积分10
7秒前
美丽的小羊完成签到,获得积分10
8秒前
邱琳完成签到,获得积分10
8秒前
9秒前
润润轩轩发布了新的文献求助10
9秒前
wait完成签到,获得积分10
9秒前
10秒前
香蕉觅云应助张_5238采纳,获得10
10秒前
阿辉发布了新的文献求助10
10秒前
科目三应助大溺采纳,获得10
10秒前
弹剑作歌完成签到,获得积分10
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
A Modern Guide to the Economics of Crime 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5271078
求助须知:如何正确求助?哪些是违规求助? 4428940
关于积分的说明 13786582
捐赠科研通 4306892
什么是DOI,文献DOI怎么找? 2363309
邀请新用户注册赠送积分活动 1358974
关于科研通互助平台的介绍 1321910