Failure Prediction of Coal Mine Equipment Braking System Based on Digital Twin Models

煤矿开采 汽车工程 制动系统 计算机科学 工程类 法律工程学 环境科学 可靠性工程 废物管理 制动器
作者
Pubo Gao,Sihai Zhao,Yi Zheng
出处
期刊:Processes [Multidisciplinary Digital Publishing Institute]
卷期号:12 (4): 837-837 被引量:4
标识
DOI:10.3390/pr12040837
摘要

The primary function of a mine hoist is the transportation of personnel and equipment, serving as a crucial link between underground and surface systems. The proper functioning of key components such as work braking and safety braking is essential for ensuring the safety of both personnel and equipment, thereby playing a critical role in the safe operation of coal mines. As coal mining operations extend to greater depths, they introduce heightened challenges for safe transportation, compounded by increased equipment loss. Consequently, there is a pressing need to enhance safety protocols to safeguard personnel and materials. Traditional maintenance and repair methods, characterized by routine equipment inspections and scheduled downtime, often fall short in addressing emerging issues promptly, leading to production delays and heightened risks for maintenance personnel. This underscores the necessity of adopting predictive maintenance strategies, leveraging digital twin models to anticipate and prevent potential faults in mine hoists. In summary, the implementation of predictive maintenance techniques grounded in digital twin technology represents a proactive and scientifically rigorous approach to ensuring the continued safe operation of mine hoists amidst the evolving challenges of deepening coal mining operations. In this study, we propose the integration of a CNN-LSTM algorithm within a digital twin framework for predicting faults in mine hoist braking systems. Utilizing software such as AMESim 2019 and MATLAB 2016b, we conduct joint simulations of the hoist braking digital twin system. Subsequently, leveraging the simulation model, we establish a fault diagnosis platform for the hoist braking system. Finally, employing the CNN-LSTM network model, we forecast failures in the mine hoist braking system. Experimental findings demonstrate the effectiveness of our proposed algorithm, achieving a prediction accuracy of 95.35%. Comparative analysis against alternative algorithms confirms the superior performance of our approach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
YifanWang应助苗条的善斓采纳,获得10
刚刚
武傲翔发布了新的文献求助10
刚刚
刚刚
刚刚
杨某发布了新的文献求助10
刚刚
在水一方应助儒雅无剑采纳,获得10
1秒前
研时友完成签到,获得积分10
1秒前
今后应助科研通管家采纳,获得30
1秒前
默默地读文献应助郁金香采纳,获得10
1秒前
1秒前
orixero应助科研通管家采纳,获得10
1秒前
酬勤发布了新的文献求助10
2秒前
2秒前
哼哼哈嘿发布了新的文献求助10
2秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
大个应助科研通管家采纳,获得10
2秒前
谜迪完成签到 ,获得积分10
2秒前
李健应助科研通管家采纳,获得10
2秒前
咕咕咕发布了新的文献求助10
2秒前
伶俐豌豆应助科研通管家采纳,获得10
2秒前
韦思茹完成签到 ,获得积分10
2秒前
852应助科研通管家采纳,获得10
2秒前
cdercder应助小帕采纳,获得10
3秒前
大模型应助科研通管家采纳,获得10
3秒前
无花果应助科研通管家采纳,获得10
3秒前
星辰大海应助Yuanyuan_Helen采纳,获得10
3秒前
李健应助科研通管家采纳,获得30
3秒前
研友_VZG7GZ应助鼻揩了转去采纳,获得10
3秒前
3秒前
大模型应助科研通管家采纳,获得10
3秒前
东asdfghjkl完成签到,获得积分10
3秒前
stevevaiqq发布了新的文献求助10
3秒前
4秒前
4秒前
望仔完成签到,获得积分20
4秒前
lalatrouble完成签到,获得积分10
5秒前
pppp发布了新的文献求助10
5秒前
怕黑寻梅发布了新的文献求助10
5秒前
Ma发布了新的文献求助10
5秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Essentials of Performance Analysis in Sport 500
Measure Mean Linear Intercept 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3729877
求助须知:如何正确求助?哪些是违规求助? 3274712
关于积分的说明 9988365
捐赠科研通 2990104
什么是DOI,文献DOI怎么找? 1640896
邀请新用户注册赠送积分活动 779488
科研通“疑难数据库(出版商)”最低求助积分说明 748235