亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Exploring deep learning radiomics for classifying osteoporotic vertebral fractures in X-ray images

人工智能 接收机工作特性 试验装置 特征选择 逻辑回归 机器学习 Lasso(编程语言) 计算机科学 特征(语言学) 深度学习 交叉验证 支持向量机 集合(抽象数据类型) 模式识别(心理学) 语言学 哲学 万维网 程序设计语言
作者
Jun Zhang,Liang Xia,Jiayi Liu,Xiaoying Niu,Jun Tang,Jianguo Xia,Yongkang Liu,Weixiao Zhang,Zhipeng Liang,Xueli Zhang,Guangyu Tang,Lin Zhang
出处
期刊:Frontiers in Endocrinology [Frontiers Media SA]
卷期号:15 被引量:1
标识
DOI:10.3389/fendo.2024.1370838
摘要

Purpose To develop and validate a deep learning radiomics (DLR) model that uses X-ray images to predict the classification of osteoporotic vertebral fractures (OVFs). Material and methods The study encompassed a cohort of 942 patients, involving examinations of 1076 vertebrae through X-ray, CT, and MRI across three distinct hospitals. The OVFs were categorized as class 0, 1, or 2 based on the Assessment System of Thoracolumbar Osteoporotic Fracture. The dataset was divided randomly into four distinct subsets: a training set comprising 712 samples, an internal validation set with 178 samples, an external validation set containing 111 samples, and a prospective validation set consisting of 75 samples. The ResNet-50 architectural model was used to implement deep transfer learning (DTL), undergoing -pre-training separately on the RadImageNet and ImageNet datasets. Features from DTL and radiomics were extracted and integrated using X-ray images. The optimal fusion feature model was identified through least absolute shrinkage and selection operator logistic regression. Evaluation of the predictive capabilities for OVFs classification involved eight machine learning models, assessed through receiver operating characteristic curves employing the “One-vs-Rest” strategy. The Delong test was applied to compare the predictive performance of the superior RadImageNet model against the ImageNet model. Results Following pre-training separately on RadImageNet and ImageNet datasets, feature selection and fusion yielded 17 and 12 fusion features, respectively. Logistic regression emerged as the optimal machine learning algorithm for both DLR models. Across the training set, internal validation set, external validation set, and prospective validation set, the macro-average Area Under the Curve (AUC) based on the RadImageNet dataset surpassed those based on the ImageNet dataset, with statistically significant differences observed (P<0.05). Utilizing the binary “One-vs-Rest” strategy, the model based on the RadImageNet dataset demonstrated superior efficacy in predicting Class 0, achieving an AUC of 0.969 and accuracy of 0.863. Predicting Class 1 yielded an AUC of 0.945 and accuracy of 0.875, while for Class 2, the AUC and accuracy were 0.809 and 0.692, respectively. Conclusion The DLR model, based on the RadImageNet dataset, outperformed the ImageNet model in predicting the classification of OVFs, with generalizability confirmed in the prospective validation set.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
在水一方应助yue采纳,获得10
12秒前
科研通AI2S应助科研通管家采纳,获得10
15秒前
大个应助科研通管家采纳,获得10
15秒前
浮游应助科研通管家采纳,获得10
15秒前
咸鱼完成签到 ,获得积分10
22秒前
yue完成签到,获得积分10
27秒前
万能图书馆应助咸鱼采纳,获得10
36秒前
呜呼完成签到,获得积分10
49秒前
桐桐应助加湿器采纳,获得10
1分钟前
1分钟前
夏佳泽发布了新的文献求助10
1分钟前
天雨流芳完成签到 ,获得积分10
1分钟前
Jasper应助夏佳泽采纳,获得10
1分钟前
kytm完成签到,获得积分10
1分钟前
2分钟前
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
可靠的一手完成签到 ,获得积分10
2分钟前
whoknowsname发布了新的文献求助10
3分钟前
3分钟前
孙宝锋发布了新的文献求助10
3分钟前
3分钟前
孙宝锋完成签到,获得积分10
3分钟前
ZaZa完成签到,获得积分10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
学生信的大叔完成签到,获得积分10
4分钟前
和谐的芷文完成签到 ,获得积分10
4分钟前
4分钟前
whoknowsname发布了新的文献求助10
4分钟前
5分钟前
傲娇泥猴桃完成签到 ,获得积分10
5分钟前
5分钟前
TongKY完成签到 ,获得积分10
5分钟前
5分钟前
5分钟前
5分钟前
王者归来完成签到,获得积分10
6分钟前
raki发布了新的文献求助10
6分钟前
田様应助科研通管家采纳,获得10
6分钟前
Shine发布了新的文献求助10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Routledge Handbook on Spaces of Mental Health and Wellbeing 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
Vertebrate Palaeontology, 5th Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5323925
求助须知:如何正确求助?哪些是违规求助? 4465024
关于积分的说明 13893967
捐赠科研通 4356721
什么是DOI,文献DOI怎么找? 2392995
邀请新用户注册赠送积分活动 1386535
关于科研通互助平台的介绍 1356693