Exploring deep learning radiomics for classifying osteoporotic vertebral fractures in X-ray images

人工智能 接收机工作特性 试验装置 特征选择 逻辑回归 机器学习 Lasso(编程语言) 计算机科学 特征(语言学) 深度学习 交叉验证 支持向量机 集合(抽象数据类型) 模式识别(心理学) 语言学 哲学 万维网 程序设计语言
作者
Jun Zhang,Liang Xia,Jiayi Liu,Xiaoying Niu,Jun Tang,Jianguo Xia,Yongkang Liu,Weixiao Zhang,Zhipeng Liang,Xueli Zhang,Guangyu Tang,Lin Zhang
出处
期刊:Frontiers in Endocrinology [Frontiers Media SA]
卷期号:15 被引量:1
标识
DOI:10.3389/fendo.2024.1370838
摘要

Purpose To develop and validate a deep learning radiomics (DLR) model that uses X-ray images to predict the classification of osteoporotic vertebral fractures (OVFs). Material and methods The study encompassed a cohort of 942 patients, involving examinations of 1076 vertebrae through X-ray, CT, and MRI across three distinct hospitals. The OVFs were categorized as class 0, 1, or 2 based on the Assessment System of Thoracolumbar Osteoporotic Fracture. The dataset was divided randomly into four distinct subsets: a training set comprising 712 samples, an internal validation set with 178 samples, an external validation set containing 111 samples, and a prospective validation set consisting of 75 samples. The ResNet-50 architectural model was used to implement deep transfer learning (DTL), undergoing -pre-training separately on the RadImageNet and ImageNet datasets. Features from DTL and radiomics were extracted and integrated using X-ray images. The optimal fusion feature model was identified through least absolute shrinkage and selection operator logistic regression. Evaluation of the predictive capabilities for OVFs classification involved eight machine learning models, assessed through receiver operating characteristic curves employing the “One-vs-Rest” strategy. The Delong test was applied to compare the predictive performance of the superior RadImageNet model against the ImageNet model. Results Following pre-training separately on RadImageNet and ImageNet datasets, feature selection and fusion yielded 17 and 12 fusion features, respectively. Logistic regression emerged as the optimal machine learning algorithm for both DLR models. Across the training set, internal validation set, external validation set, and prospective validation set, the macro-average Area Under the Curve (AUC) based on the RadImageNet dataset surpassed those based on the ImageNet dataset, with statistically significant differences observed (P<0.05). Utilizing the binary “One-vs-Rest” strategy, the model based on the RadImageNet dataset demonstrated superior efficacy in predicting Class 0, achieving an AUC of 0.969 and accuracy of 0.863. Predicting Class 1 yielded an AUC of 0.945 and accuracy of 0.875, while for Class 2, the AUC and accuracy were 0.809 and 0.692, respectively. Conclusion The DLR model, based on the RadImageNet dataset, outperformed the ImageNet model in predicting the classification of OVFs, with generalizability confirmed in the prospective validation set.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
科研小白发布了新的文献求助10
3秒前
舒心夏云完成签到,获得积分10
4秒前
5秒前
抖逗豆发布了新的文献求助10
5秒前
聂难敌发布了新的文献求助10
5秒前
茜牙牙牙发布了新的文献求助10
6秒前
6秒前
无花果应助科研通管家采纳,获得10
7秒前
香蕉觅云应助科研通管家采纳,获得10
7秒前
FashionBoy应助科研通管家采纳,获得10
7秒前
wanci应助科研通管家采纳,获得10
7秒前
丘比特应助科研通管家采纳,获得10
8秒前
NexusExplorer应助科研通管家采纳,获得10
8秒前
舒心夏云发布了新的文献求助30
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
今后应助科研通管家采纳,获得10
8秒前
Hello应助科研通管家采纳,获得10
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
轻松冰旋应助科研通管家采纳,获得10
8秒前
桐桐应助科研通管家采纳,获得10
8秒前
爆米花应助科研通管家采纳,获得10
8秒前
kmkz发布了新的文献求助10
8秒前
隐形曼青应助科研通管家采纳,获得10
8秒前
乐乐应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
8秒前
lkjh关注了科研通微信公众号
8秒前
LXx完成签到 ,获得积分10
9秒前
9秒前
初心发布了新的文献求助10
10秒前
隐形曼青应助小聋包采纳,获得10
11秒前
11秒前
12秒前
傻傻的宛白完成签到,获得积分10
13秒前
允怡发布了新的文献求助10
13秒前
Youtenter发布了新的文献求助20
13秒前
14秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141752
求助须知:如何正确求助?哪些是违规求助? 2792710
关于积分的说明 7803941
捐赠科研通 2448986
什么是DOI,文献DOI怎么找? 1303011
科研通“疑难数据库(出版商)”最低求助积分说明 626717
版权声明 601244