Exploring deep learning radiomics for classifying osteoporotic vertebral fractures in X-ray images

人工智能 接收机工作特性 试验装置 特征选择 逻辑回归 机器学习 Lasso(编程语言) 计算机科学 特征(语言学) 深度学习 交叉验证 支持向量机 集合(抽象数据类型) 模式识别(心理学) 语言学 哲学 万维网 程序设计语言
作者
Jun Zhang,Liang Xia,Jiayi Liu,Xiaoying Niu,Jun Tang,Jianguo Xia,Yongkang Liu,Weixiao Zhang,Zhipeng Liang,Xueli Zhang,Guangyu Tang,Lin Zhang
出处
期刊:Frontiers in Endocrinology [Frontiers Media]
卷期号:15 被引量:1
标识
DOI:10.3389/fendo.2024.1370838
摘要

Purpose To develop and validate a deep learning radiomics (DLR) model that uses X-ray images to predict the classification of osteoporotic vertebral fractures (OVFs). Material and methods The study encompassed a cohort of 942 patients, involving examinations of 1076 vertebrae through X-ray, CT, and MRI across three distinct hospitals. The OVFs were categorized as class 0, 1, or 2 based on the Assessment System of Thoracolumbar Osteoporotic Fracture. The dataset was divided randomly into four distinct subsets: a training set comprising 712 samples, an internal validation set with 178 samples, an external validation set containing 111 samples, and a prospective validation set consisting of 75 samples. The ResNet-50 architectural model was used to implement deep transfer learning (DTL), undergoing -pre-training separately on the RadImageNet and ImageNet datasets. Features from DTL and radiomics were extracted and integrated using X-ray images. The optimal fusion feature model was identified through least absolute shrinkage and selection operator logistic regression. Evaluation of the predictive capabilities for OVFs classification involved eight machine learning models, assessed through receiver operating characteristic curves employing the “One-vs-Rest” strategy. The Delong test was applied to compare the predictive performance of the superior RadImageNet model against the ImageNet model. Results Following pre-training separately on RadImageNet and ImageNet datasets, feature selection and fusion yielded 17 and 12 fusion features, respectively. Logistic regression emerged as the optimal machine learning algorithm for both DLR models. Across the training set, internal validation set, external validation set, and prospective validation set, the macro-average Area Under the Curve (AUC) based on the RadImageNet dataset surpassed those based on the ImageNet dataset, with statistically significant differences observed (P<0.05). Utilizing the binary “One-vs-Rest” strategy, the model based on the RadImageNet dataset demonstrated superior efficacy in predicting Class 0, achieving an AUC of 0.969 and accuracy of 0.863. Predicting Class 1 yielded an AUC of 0.945 and accuracy of 0.875, while for Class 2, the AUC and accuracy were 0.809 and 0.692, respectively. Conclusion The DLR model, based on the RadImageNet dataset, outperformed the ImageNet model in predicting the classification of OVFs, with generalizability confirmed in the prospective validation set.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yusheng完成签到,获得积分10
2秒前
跳跳妈妈完成签到,获得积分10
2秒前
3秒前
今后应助155采纳,获得10
4秒前
Selenaxue完成签到,获得积分10
4秒前
4秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
印第安纳0号特工完成签到,获得积分10
6秒前
Q_完成签到 ,获得积分10
6秒前
小蜻蜓应助秋日思语采纳,获得10
11秒前
蜜桃小丸子完成签到 ,获得积分10
12秒前
大模型应助大面包采纳,获得10
13秒前
15秒前
ggxiang1989完成签到,获得积分10
17秒前
ding应助林平之采纳,获得10
17秒前
19秒前
斯文败类应助fcyyc采纳,获得10
21秒前
21秒前
22秒前
萌新完成签到,获得积分10
22秒前
FFFFcom发布了新的文献求助10
23秒前
CipherSage应助哩哩采纳,获得30
23秒前
大面包发布了新的文献求助10
25秒前
NexusExplorer应助uwhui采纳,获得10
26秒前
bioglia完成签到,获得积分10
27秒前
28秒前
Ava应助ZBA采纳,获得10
30秒前
30秒前
fcyyc发布了新的文献求助10
34秒前
相忘于江湖发布了新的文献求助100
34秒前
34秒前
MJSZY完成签到,获得积分10
36秒前
8R60d8应助WNL采纳,获得10
37秒前
37秒前
萝卜发布了新的文献求助30
38秒前
clj完成签到 ,获得积分10
41秒前
42秒前
43秒前
Misty_完成签到,获得积分10
44秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958164
求助须知:如何正确求助?哪些是违规求助? 3504370
关于积分的说明 11118094
捐赠科研通 3235637
什么是DOI,文献DOI怎么找? 1788403
邀请新用户注册赠送积分活动 871211
科研通“疑难数据库(出版商)”最低求助积分说明 802547