Exploring deep learning radiomics for classifying osteoporotic vertebral fractures in X-ray images

人工智能 接收机工作特性 试验装置 特征选择 逻辑回归 机器学习 Lasso(编程语言) 计算机科学 特征(语言学) 深度学习 交叉验证 支持向量机 集合(抽象数据类型) 模式识别(心理学) 语言学 哲学 万维网 程序设计语言
作者
Jun Zhang,Liang Xia,Jiayi Liu,Xiaoying Niu,Jun Tang,Jianguo Xia,Yongkang Liu,Weixiao Zhang,Zhipeng Liang,Xueli Zhang,Guangyu Tang,Lin Zhang
出处
期刊:Frontiers in Endocrinology [Frontiers Media SA]
卷期号:15 被引量:1
标识
DOI:10.3389/fendo.2024.1370838
摘要

Purpose To develop and validate a deep learning radiomics (DLR) model that uses X-ray images to predict the classification of osteoporotic vertebral fractures (OVFs). Material and methods The study encompassed a cohort of 942 patients, involving examinations of 1076 vertebrae through X-ray, CT, and MRI across three distinct hospitals. The OVFs were categorized as class 0, 1, or 2 based on the Assessment System of Thoracolumbar Osteoporotic Fracture. The dataset was divided randomly into four distinct subsets: a training set comprising 712 samples, an internal validation set with 178 samples, an external validation set containing 111 samples, and a prospective validation set consisting of 75 samples. The ResNet-50 architectural model was used to implement deep transfer learning (DTL), undergoing -pre-training separately on the RadImageNet and ImageNet datasets. Features from DTL and radiomics were extracted and integrated using X-ray images. The optimal fusion feature model was identified through least absolute shrinkage and selection operator logistic regression. Evaluation of the predictive capabilities for OVFs classification involved eight machine learning models, assessed through receiver operating characteristic curves employing the “One-vs-Rest” strategy. The Delong test was applied to compare the predictive performance of the superior RadImageNet model against the ImageNet model. Results Following pre-training separately on RadImageNet and ImageNet datasets, feature selection and fusion yielded 17 and 12 fusion features, respectively. Logistic regression emerged as the optimal machine learning algorithm for both DLR models. Across the training set, internal validation set, external validation set, and prospective validation set, the macro-average Area Under the Curve (AUC) based on the RadImageNet dataset surpassed those based on the ImageNet dataset, with statistically significant differences observed (P<0.05). Utilizing the binary “One-vs-Rest” strategy, the model based on the RadImageNet dataset demonstrated superior efficacy in predicting Class 0, achieving an AUC of 0.969 and accuracy of 0.863. Predicting Class 1 yielded an AUC of 0.945 and accuracy of 0.875, while for Class 2, the AUC and accuracy were 0.809 and 0.692, respectively. Conclusion The DLR model, based on the RadImageNet dataset, outperformed the ImageNet model in predicting the classification of OVFs, with generalizability confirmed in the prospective validation set.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
orixero应助aha采纳,获得10
刚刚
bkagyin应助顺心绮兰采纳,获得10
刚刚
12345tty发布了新的文献求助10
1秒前
傲娇的婷发布了新的文献求助10
1秒前
1秒前
drwlr完成签到,获得积分10
1秒前
1秒前
1秒前
2秒前
这波你的吗完成签到 ,获得积分10
2秒前
2秒前
lixue发布了新的文献求助10
2秒前
shelemi发布了新的文献求助10
2秒前
树懒发布了新的文献求助10
4秒前
浮游应助galvin采纳,获得10
4秒前
lyx发布了新的文献求助10
4秒前
4秒前
suk发布了新的文献求助10
5秒前
5秒前
Katyusha发布了新的文献求助10
5秒前
sunny完成签到,获得积分10
5秒前
Zx_1993应助Helbock采纳,获得10
5秒前
skf完成签到,获得积分10
6秒前
LJH完成签到,获得积分20
6秒前
6秒前
动人的大飞完成签到,获得积分10
6秒前
852应助草莓苹果采纳,获得10
6秒前
6秒前
6秒前
李健应助雯雯采纳,获得10
7秒前
7秒前
7秒前
7秒前
7秒前
你快睡吧完成签到,获得积分10
7秒前
信徒发布了新的文献求助20
7秒前
汤飞柏发布了新的文献求助10
8秒前
伊莎贝儿发布了新的文献求助10
8秒前
今天学习了吗完成签到,获得积分10
8秒前
尔东发布了新的文献求助10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5505663
求助须知:如何正确求助?哪些是违规求助? 4601332
关于积分的说明 14476017
捐赠科研通 4535251
什么是DOI,文献DOI怎么找? 2485257
邀请新用户注册赠送积分活动 1468282
关于科研通互助平台的介绍 1440744