Potato leaf disease detection with a novel deep learning model based on depthwise separable convolution and transformer networks

计算机科学 变压器 可分离空间 人工智能 深度学习 卷积(计算机科学) 模式识别(心理学) 人工神经网络 电气工程 电压 数学 数学分析 工程类
作者
Hatice Çatal Reis,Veysel Turk
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:133: 108307-108307 被引量:23
标识
DOI:10.1016/j.engappai.2024.108307
摘要

Early diagnosis of plant diseases is essential in reducing economic losses for farmers and increasing production efficiency. Therefore, Computer-Aided Diagnosis (CAD) systems supported by artificial intelligence technologies can be developed to help diagnose diseases quickly and accurately by examining the symptoms and signs in plant leaves. In this study, Multi-head Attention Mechanism Depthwise Separable Convolution Inception Reduction Network (MDSCIRNet) architecture, an image-based deep convolutional neural network, is proposed for classifying potato leaf diseases. The main components of the MDSCIRNet architecture are depthwise separable convolution (DSC) and a multi-head attention mechanism. The proposed architecture has been compared with modern algorithms developed with DSC technology, such as Xception, MobileNet, and deep learning algorithms, such as ResNet101, InceptionV3, and EfficientNetB2, to evaluate its performance in the classification process. In addition, hybrid methods developed with the classical machine learning algorithms Support Vector Machine (SVM), Logistic Regression (LR), Random Forest (RF), Adaptive Boosting (AdaBoost), and MDSCIRNet model, integrated deep learning model, hard voting ensemble learning model. Suggested methods such as these were also used in the experimental process. Moreover, techniques such as Contrast Limited Adaptive Histogram Equalization (CLAHE), Enhanced Super-Resolution Generative Adversarial Networks (ESRGAN), and Hypercolumn were used to improve the image quality of the data set. In the experimental process, the MDSCIRNet deep learning architecture achieved 99.24% accuracy in the study using the original dataset. While a 99.11% accuracy rate was achieved with the integrated deep learning model and hard voting ensemble learning model, the highest success rate of 99.33% was performed in the study conducted with the MDSCIRNet + SVM method. This study contributes to developing new and effective strategies in the agricultural industry for the early diagnosis and control of potato plant diseases. Machine learning-based approaches offer the potential to minimize economic losses and increase productivity in production by allowing farmers to intervene early.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
阳光土豆完成签到,获得积分20
刚刚
orixero应助机智的然然采纳,获得30
1秒前
璇22发布了新的文献求助10
1秒前
来杯生椰拿铁完成签到,获得积分10
2秒前
闫先生完成签到,获得积分10
2秒前
2秒前
鱼子西完成签到,获得积分10
2秒前
baisefengche完成签到,获得积分20
2秒前
3秒前
寒冷书竹发布了新的文献求助10
4秒前
令人秃头发布了新的文献求助10
5秒前
iyy完成签到,获得积分20
5秒前
LuciusHe发布了新的文献求助10
5秒前
领导范儿应助NNUsusan采纳,获得10
5秒前
搞怪城完成签到,获得积分10
5秒前
水吉水吉完成签到,获得积分10
5秒前
哆啦完成签到,获得积分10
6秒前
ily.发布了新的文献求助10
6秒前
FashionBoy应助科研扫地僧采纳,获得10
6秒前
admin完成签到,获得积分10
6秒前
zzzy完成签到 ,获得积分10
7秒前
7秒前
顺利紫山发布了新的文献求助10
7秒前
pluto应助宁阿霜采纳,获得10
8秒前
无辜紫菜完成签到,获得积分10
10秒前
zhugongwangdawei完成签到,获得积分10
10秒前
admin发布了新的文献求助10
10秒前
10秒前
leodu发布了新的文献求助10
11秒前
芹菜完成签到,获得积分10
11秒前
SHAO应助璇22采纳,获得10
11秒前
11秒前
DDKK发布了新的文献求助50
12秒前
ily.完成签到,获得积分10
12秒前
12秒前
13秒前
13秒前
Ava应助胡导家的菜狗采纳,获得10
14秒前
Hi完成签到 ,获得积分10
15秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986953
求助须知:如何正确求助?哪些是违规求助? 3529326
关于积分的说明 11244328
捐赠科研通 3267695
什么是DOI,文献DOI怎么找? 1803880
邀请新用户注册赠送积分活动 881223
科研通“疑难数据库(出版商)”最低求助积分说明 808620