清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Potato leaf disease detection with a novel deep learning model based on depthwise separable convolution and transformer networks

计算机科学 变压器 可分离空间 人工智能 深度学习 卷积(计算机科学) 模式识别(心理学) 人工神经网络 电气工程 电压 数学 工程类 数学分析
作者
Hatice Çatal Reis,Veysel Turk
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:133: 108307-108307 被引量:42
标识
DOI:10.1016/j.engappai.2024.108307
摘要

Early diagnosis of plant diseases is essential in reducing economic losses for farmers and increasing production efficiency. Therefore, Computer-Aided Diagnosis (CAD) systems supported by artificial intelligence technologies can be developed to help diagnose diseases quickly and accurately by examining the symptoms and signs in plant leaves. In this study, Multi-head Attention Mechanism Depthwise Separable Convolution Inception Reduction Network (MDSCIRNet) architecture, an image-based deep convolutional neural network, is proposed for classifying potato leaf diseases. The main components of the MDSCIRNet architecture are depthwise separable convolution (DSC) and a multi-head attention mechanism. The proposed architecture has been compared with modern algorithms developed with DSC technology, such as Xception, MobileNet, and deep learning algorithms, such as ResNet101, InceptionV3, and EfficientNetB2, to evaluate its performance in the classification process. In addition, hybrid methods developed with the classical machine learning algorithms Support Vector Machine (SVM), Logistic Regression (LR), Random Forest (RF), Adaptive Boosting (AdaBoost), and MDSCIRNet model, integrated deep learning model, hard voting ensemble learning model. Suggested methods such as these were also used in the experimental process. Moreover, techniques such as Contrast Limited Adaptive Histogram Equalization (CLAHE), Enhanced Super-Resolution Generative Adversarial Networks (ESRGAN), and Hypercolumn were used to improve the image quality of the data set. In the experimental process, the MDSCIRNet deep learning architecture achieved 99.24% accuracy in the study using the original dataset. While a 99.11% accuracy rate was achieved with the integrated deep learning model and hard voting ensemble learning model, the highest success rate of 99.33% was performed in the study conducted with the MDSCIRNet + SVM method. This study contributes to developing new and effective strategies in the agricultural industry for the early diagnosis and control of potato plant diseases. Machine learning-based approaches offer the potential to minimize economic losses and increase productivity in production by allowing farmers to intervene early.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
财路通八方完成签到 ,获得积分10
1秒前
Jasper应助我亦化身东海去采纳,获得10
9秒前
joker完成签到 ,获得积分0
23秒前
GarrickO应助李小雨采纳,获得60
30秒前
练得身形似鹤形完成签到 ,获得积分10
30秒前
qinghe完成签到 ,获得积分10
33秒前
白白不喽完成签到 ,获得积分10
37秒前
Barton完成签到,获得积分10
39秒前
凉面完成签到 ,获得积分10
44秒前
lpp完成签到 ,获得积分10
56秒前
宇文雨文完成签到 ,获得积分10
57秒前
59秒前
Gary完成签到 ,获得积分10
1分钟前
Lucas应助科研通管家采纳,获得10
1分钟前
赘婿应助科研通管家采纳,获得10
1分钟前
香蕉妙菱发布了新的文献求助10
1分钟前
郭磊完成签到 ,获得积分10
1分钟前
吃吃吃不敢吃完成签到 ,获得积分10
1分钟前
研友_VZG7GZ应助香蕉妙菱采纳,获得10
1分钟前
秋天完成签到,获得积分10
1分钟前
bo完成签到 ,获得积分10
1分钟前
carl完成签到 ,获得积分10
1分钟前
1分钟前
香蕉妙菱发布了新的文献求助10
2分钟前
胡图图完成签到 ,获得积分10
2分钟前
赘婿应助香蕉妙菱采纳,获得10
2分钟前
朱婷完成签到 ,获得积分10
2分钟前
2分钟前
自由盼夏完成签到 ,获得积分10
2分钟前
小七发布了新的文献求助10
2分钟前
思维隋完成签到 ,获得积分10
2分钟前
2分钟前
香蕉妙菱发布了新的文献求助10
2分钟前
时代更迭完成签到 ,获得积分10
2分钟前
倩倩完成签到 ,获得积分10
3分钟前
GingerF应助科研通管家采纳,获得200
3分钟前
田様应助科研通管家采纳,获得10
3分钟前
3分钟前
慧子完成签到,获得积分10
3分钟前
小七完成签到,获得积分10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 2000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
茶艺师试题库(初级、中级、高级、技师、高级技师) 1000
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5357769
求助须知:如何正确求助?哪些是违规求助? 4489021
关于积分的说明 13972829
捐赠科研通 4390433
什么是DOI,文献DOI怎么找? 2412085
邀请新用户注册赠送积分活动 1404642
关于科研通互助平台的介绍 1379048