Potato leaf disease detection with a novel deep learning model based on depthwise separable convolution and transformer networks

计算机科学 变压器 可分离空间 人工智能 深度学习 卷积(计算机科学) 模式识别(心理学) 人工神经网络 电气工程 电压 数学 工程类 数学分析
作者
Hatice Çatal Reis,Veysel Turk
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:133: 108307-108307 被引量:23
标识
DOI:10.1016/j.engappai.2024.108307
摘要

Early diagnosis of plant diseases is essential in reducing economic losses for farmers and increasing production efficiency. Therefore, Computer-Aided Diagnosis (CAD) systems supported by artificial intelligence technologies can be developed to help diagnose diseases quickly and accurately by examining the symptoms and signs in plant leaves. In this study, Multi-head Attention Mechanism Depthwise Separable Convolution Inception Reduction Network (MDSCIRNet) architecture, an image-based deep convolutional neural network, is proposed for classifying potato leaf diseases. The main components of the MDSCIRNet architecture are depthwise separable convolution (DSC) and a multi-head attention mechanism. The proposed architecture has been compared with modern algorithms developed with DSC technology, such as Xception, MobileNet, and deep learning algorithms, such as ResNet101, InceptionV3, and EfficientNetB2, to evaluate its performance in the classification process. In addition, hybrid methods developed with the classical machine learning algorithms Support Vector Machine (SVM), Logistic Regression (LR), Random Forest (RF), Adaptive Boosting (AdaBoost), and MDSCIRNet model, integrated deep learning model, hard voting ensemble learning model. Suggested methods such as these were also used in the experimental process. Moreover, techniques such as Contrast Limited Adaptive Histogram Equalization (CLAHE), Enhanced Super-Resolution Generative Adversarial Networks (ESRGAN), and Hypercolumn were used to improve the image quality of the data set. In the experimental process, the MDSCIRNet deep learning architecture achieved 99.24% accuracy in the study using the original dataset. While a 99.11% accuracy rate was achieved with the integrated deep learning model and hard voting ensemble learning model, the highest success rate of 99.33% was performed in the study conducted with the MDSCIRNet + SVM method. This study contributes to developing new and effective strategies in the agricultural industry for the early diagnosis and control of potato plant diseases. Machine learning-based approaches offer the potential to minimize economic losses and increase productivity in production by allowing farmers to intervene early.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
坚强似狮完成签到,获得积分10
刚刚
刚刚
刚刚
沧海青州发布了新的文献求助10
1秒前
完犊子完成签到,获得积分20
1秒前
dumeng完成签到,获得积分10
2秒前
wnx001111发布了新的文献求助10
2秒前
jchen完成签到,获得积分10
3秒前
月关发布了新的文献求助20
4秒前
5秒前
lvyan发布了新的文献求助10
5秒前
苗条香发布了新的文献求助10
5秒前
幸福诗槐完成签到,获得积分10
6秒前
哈瓜豆完成签到,获得积分10
7秒前
吃土豆的番茄完成签到,获得积分10
7秒前
airwing发布了新的文献求助10
7秒前
8秒前
euphoria完成签到,获得积分10
9秒前
9秒前
9秒前
ky发布了新的文献求助10
9秒前
9秒前
Bestchu完成签到 ,获得积分10
10秒前
量子星尘发布了新的文献求助10
10秒前
Bestchu关注了科研通微信公众号
12秒前
感性的剑愁完成签到,获得积分10
13秒前
13秒前
13秒前
Ace发布了新的文献求助10
13秒前
14秒前
16秒前
乐乐应助hehsk采纳,获得10
16秒前
16秒前
脑洞疼应助LBJ采纳,获得10
16秒前
哇哇发布了新的文献求助30
16秒前
Snoopy发布了新的文献求助10
16秒前
浮游应助hkh采纳,获得10
17秒前
17秒前
ROBO应助hkh采纳,获得10
17秒前
Loki应助hkh采纳,获得10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5072862
求助须知:如何正确求助?哪些是违规求助? 4293130
关于积分的说明 13377256
捐赠科研通 4114419
什么是DOI,文献DOI怎么找? 2252964
邀请新用户注册赠送积分活动 1257744
关于科研通互助平台的介绍 1190631