Potato leaf disease detection with a novel deep learning model based on depthwise separable convolution and transformer networks

计算机科学 变压器 可分离空间 人工智能 深度学习 卷积(计算机科学) 模式识别(心理学) 人工神经网络 电气工程 电压 数学 工程类 数学分析
作者
Hatice Çatal Reis,Veysel Turk
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:133: 108307-108307 被引量:23
标识
DOI:10.1016/j.engappai.2024.108307
摘要

Early diagnosis of plant diseases is essential in reducing economic losses for farmers and increasing production efficiency. Therefore, Computer-Aided Diagnosis (CAD) systems supported by artificial intelligence technologies can be developed to help diagnose diseases quickly and accurately by examining the symptoms and signs in plant leaves. In this study, Multi-head Attention Mechanism Depthwise Separable Convolution Inception Reduction Network (MDSCIRNet) architecture, an image-based deep convolutional neural network, is proposed for classifying potato leaf diseases. The main components of the MDSCIRNet architecture are depthwise separable convolution (DSC) and a multi-head attention mechanism. The proposed architecture has been compared with modern algorithms developed with DSC technology, such as Xception, MobileNet, and deep learning algorithms, such as ResNet101, InceptionV3, and EfficientNetB2, to evaluate its performance in the classification process. In addition, hybrid methods developed with the classical machine learning algorithms Support Vector Machine (SVM), Logistic Regression (LR), Random Forest (RF), Adaptive Boosting (AdaBoost), and MDSCIRNet model, integrated deep learning model, hard voting ensemble learning model. Suggested methods such as these were also used in the experimental process. Moreover, techniques such as Contrast Limited Adaptive Histogram Equalization (CLAHE), Enhanced Super-Resolution Generative Adversarial Networks (ESRGAN), and Hypercolumn were used to improve the image quality of the data set. In the experimental process, the MDSCIRNet deep learning architecture achieved 99.24% accuracy in the study using the original dataset. While a 99.11% accuracy rate was achieved with the integrated deep learning model and hard voting ensemble learning model, the highest success rate of 99.33% was performed in the study conducted with the MDSCIRNet + SVM method. This study contributes to developing new and effective strategies in the agricultural industry for the early diagnosis and control of potato plant diseases. Machine learning-based approaches offer the potential to minimize economic losses and increase productivity in production by allowing farmers to intervene early.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小鱼仔完成签到,获得积分20
1秒前
霜烬染完成签到,获得积分10
2秒前
2秒前
2秒前
我是罗举办完成签到,获得积分10
3秒前
没见热爱完成签到,获得积分10
5秒前
shendu发布了新的文献求助10
5秒前
5秒前
5秒前
qqy完成签到,获得积分10
7秒前
不安的橘子完成签到,获得积分10
7秒前
8秒前
小鱼仔发布了新的文献求助10
8秒前
8秒前
lgq12697应助白兔采纳,获得10
8秒前
xiaomi发布了新的文献求助10
9秒前
小致完成签到,获得积分10
9秒前
不想干活应助高高钢铁侠采纳,获得10
9秒前
浮游应助高高钢铁侠采纳,获得10
9秒前
柔弱飞槐完成签到,获得积分10
9秒前
七页禾发布了新的文献求助30
9秒前
今后应助落雨采纳,获得10
9秒前
9秒前
10秒前
ekko完成签到,获得积分10
11秒前
11秒前
13秒前
JamesPei应助科研通管家采纳,获得20
13秒前
ding应助科研通管家采纳,获得10
13秒前
Ava应助快来吃甜瓜采纳,获得10
13秒前
科研通AI6应助科研通管家采纳,获得10
13秒前
桐桐应助科研通管家采纳,获得10
13秒前
爆米花应助科研通管家采纳,获得10
13秒前
桐桐应助科研通管家采纳,获得30
13秒前
李爱国应助科研通管家采纳,获得10
13秒前
Chaos发布了新的文献求助10
13秒前
科目三应助科研通管家采纳,获得10
13秒前
13秒前
赘婿应助科研通管家采纳,获得10
13秒前
JamesPei应助科研通管家采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Inherited Metabolic Disease in Adults: A Clinical Guide 500
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Partial Least Squares Structural Equation Modeling (PLS-SEM) using SmartPLS 3.0 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4633293
求助须知:如何正确求助?哪些是违规求助? 4029304
关于积分的说明 12466863
捐赠科研通 3715514
什么是DOI,文献DOI怎么找? 2050190
邀请新用户注册赠送积分活动 1081753
科研通“疑难数据库(出版商)”最低求助积分说明 964055