Potato leaf disease detection with a novel deep learning model based on depthwise separable convolution and transformer networks

计算机科学 变压器 可分离空间 人工智能 深度学习 卷积(计算机科学) 模式识别(心理学) 人工神经网络 电气工程 电压 数学 数学分析 工程类
作者
Hatice Çatal Reis,Veysel Turk
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:133: 108307-108307 被引量:1
标识
DOI:10.1016/j.engappai.2024.108307
摘要

Early diagnosis of plant diseases is essential in reducing economic losses for farmers and increasing production efficiency. Therefore, Computer-Aided Diagnosis (CAD) systems supported by artificial intelligence technologies can be developed to help diagnose diseases quickly and accurately by examining the symptoms and signs in plant leaves. In this study, Multi-head Attention Mechanism Depthwise Separable Convolution Inception Reduction Network (MDSCIRNet) architecture, an image-based deep convolutional neural network, is proposed for classifying potato leaf diseases. The main components of the MDSCIRNet architecture are depthwise separable convolution (DSC) and a multi-head attention mechanism. The proposed architecture has been compared with modern algorithms developed with DSC technology, such as Xception, MobileNet, and deep learning algorithms, such as ResNet101, InceptionV3, and EfficientNetB2, to evaluate its performance in the classification process. In addition, hybrid methods developed with the classical machine learning algorithms Support Vector Machine (SVM), Logistic Regression (LR), Random Forest (RF), Adaptive Boosting (AdaBoost), and MDSCIRNet model, integrated deep learning model, hard voting ensemble learning model. Suggested methods such as these were also used in the experimental process. Moreover, techniques such as Contrast Limited Adaptive Histogram Equalization (CLAHE), Enhanced Super-Resolution Generative Adversarial Networks (ESRGAN), and Hypercolumn were used to improve the image quality of the data set. In the experimental process, the MDSCIRNet deep learning architecture achieved 99.24% accuracy in the study using the original dataset. While a 99.11% accuracy rate was achieved with the integrated deep learning model and hard voting ensemble learning model, the highest success rate of 99.33% was performed in the study conducted with the MDSCIRNet + SVM method. This study contributes to developing new and effective strategies in the agricultural industry for the early diagnosis and control of potato plant diseases. Machine learning-based approaches offer the potential to minimize economic losses and increase productivity in production by allowing farmers to intervene early.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一颗肉丸完成签到 ,获得积分10
2秒前
李爱国应助超级的鞅采纳,获得10
3秒前
3秒前
会飞的猪完成签到,获得积分10
3秒前
4秒前
bai完成签到,获得积分10
4秒前
情怀应助清秋夜露白采纳,获得10
4秒前
Ava应助心落失采纳,获得10
8秒前
Lucas应助你怎么睡得着觉采纳,获得10
8秒前
wanci应助葡萄夹子采纳,获得10
9秒前
10秒前
不发Q1不改名完成签到,获得积分10
10秒前
10秒前
10秒前
深情安青应助骆欣怡采纳,获得10
14秒前
14秒前
14秒前
15秒前
lyric发布了新的文献求助10
16秒前
wanci应助时尚的书易采纳,获得10
16秒前
FashionBoy应助自行输入昵称采纳,获得10
16秒前
婉玉完成签到,获得积分10
16秒前
16秒前
使命完成签到 ,获得积分10
17秒前
ding应助杨y采纳,获得10
18秒前
科研门外汉完成签到,获得积分10
19秒前
江瀛完成签到,获得积分10
20秒前
21秒前
若水应助传统的鹏涛采纳,获得10
21秒前
wang发布了新的文献求助10
22秒前
24秒前
今后应助陈小宇kk采纳,获得10
24秒前
顾矜应助曾经不言采纳,获得10
25秒前
25秒前
25秒前
鱼不会游泳吧完成签到 ,获得积分10
26秒前
28秒前
淡淡远锋发布了新的文献求助10
29秒前
30秒前
苏蛋蛋i发布了新的文献求助10
30秒前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
Research on managing groups and teams 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3330136
求助须知:如何正确求助?哪些是违规求助? 2959781
关于积分的说明 8596794
捐赠科研通 2638173
什么是DOI,文献DOI怎么找? 1444189
科研通“疑难数据库(出版商)”最低求助积分说明 669017
邀请新用户注册赠送积分活动 656589