PSFL: Ensuring Data Privacy and Model Security for Federated Learning

计算机科学 信息隐私 计算机安全 数据建模 数据安全 互联网隐私 加密 数据库
作者
Jing Li,Youliang Tian,Zhou Zhou,Axin Xiang,Shuai Wang,Jinbo Xiong
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:11 (15): 26234-26252 被引量:3
标识
DOI:10.1109/jiot.2024.3394168
摘要

The integration of blockchain-based federated learning (BFL) and Industry 4.0 utilizes intermediate models to execute task deployment and result acceptance, effectively solving the problems of data barriers and data resource waste in Industry 4.0. However, the BFL ecosystem is susceptible to poisoning and inference attacks that undermine data privacy and model security. In this paper, we propose PSFL, a robust FL framework that guarantees both data privacy and model security. Specifically, we design a cross-validation algorithm where numerous participants conduct a thorough assessment of the user's contribution growth rate in the current round. This approach proves effective in identifying Byzantine attackers engaged in malicious activities within the system. Furthermore, we propose a lightweight multi-receiver signcryption mechanism employing secure key distribution, which significantly minimizes resource overhead. Finally, the security of PSFL is proved based on the random oracle model. Empirical assessment affirms the effectiveness and practicality of PSFL, even with different proportions of malicious users, PSFL's performance is 10%20% higher than Trimmed Mean and M-Krum. In summary, PSFL improves the model accuracy and the security of the model transmission process in scenarios involving edge node poisoning, which demonstrates that PSFL can be well adapted to Industry 4.0.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
今后应助张成采纳,获得10
1秒前
大个应助Hear采纳,获得10
1秒前
甜晞发布了新的文献求助10
2秒前
vvvvyl应助Cecily采纳,获得10
3秒前
xing完成签到,获得积分10
3秒前
直率如容完成签到 ,获得积分10
3秒前
快乐映秋完成签到,获得积分10
4秒前
儒雅一凤发布了新的文献求助10
4秒前
周周完成签到,获得积分20
5秒前
1111发布了新的文献求助10
5秒前
xzyin应助零度寂寞3166采纳,获得10
5秒前
种草匠完成签到,获得积分10
6秒前
Q11发布了新的文献求助10
7秒前
阿V完成签到,获得积分10
7秒前
勤恳代灵完成签到,获得积分10
7秒前
7秒前
8秒前
细心可乐完成签到 ,获得积分10
8秒前
在水一方应助啊哈采纳,获得30
9秒前
9秒前
细心飞鸟完成签到 ,获得积分10
9秒前
1351567822应助可夫司机采纳,获得30
10秒前
11秒前
Hum0ro98发布了新的文献求助50
11秒前
11秒前
Phi.Wang发布了新的文献求助10
11秒前
11秒前
12秒前
天天快乐应助Q11采纳,获得10
12秒前
12秒前
Vianne发布了新的文献求助30
12秒前
13秒前
顺利发布了新的文献求助10
13秒前
Sam应助感动的念双采纳,获得10
13秒前
艾科研完成签到,获得积分10
13秒前
14秒前
江浪浪发布了新的文献求助30
14秒前
15秒前
明尘完成签到,获得积分10
15秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Continuum thermodynamics and material modelling 2000
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
지식생태학: 생태학, 죽은 지식을 깨우다 700
Neuromuscular and Electrodiagnostic Medicine Board Review 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3469451
求助须知:如何正确求助?哪些是违规求助? 3062557
关于积分的说明 9079417
捐赠科研通 2752815
什么是DOI,文献DOI怎么找? 1510651
科研通“疑难数据库(出版商)”最低求助积分说明 697925
邀请新用户注册赠送积分活动 697880