Image quality assessment of advanced reconstruction algorithm for point-of-care MRI scanner

医学 图像质量 磁共振成像 人工智能 扫描仪 核医学 计算机视觉 放射科 图像(数学) 计算机科学
作者
Elizabeth A. Krupinski,DeAngelo Harris,Lori R. Arlinghaus,Jo Schlemper,Michal Sofka
出处
期刊:Journal of medical imaging [SPIE - International Society for Optical Engineering]
卷期号:10 (S1) 被引量:2
标识
DOI:10.1117/1.jmi.10.s1.s11913
摘要

Portable magnetic resonance imaging (pMRI) has potential to rapidly acquire images at the patients' bedside to improve access in locations lacking MRI devices. The scanner under consideration has a magnetic field strength of 0.064 T, thus image-processing algorithms to improve image quality are required. Our study evaluated pMRI images produced using a deep learning (DL)-based advanced reconstruction scheme to improve image quality by reducing image blurring and noise to determine if diagnostic performance was similar to images acquired at 1.5 T.Six radiologists viewed 90 brain MRI cases (30 acute ischemic stroke (AIS), 30 hemorrhage, 30 no lesion) with T1, T2, and fluid attenuated inversion recovery sequences, once using standard of care (SOC) images (1.5 T) and once using pMRI DL-based advanced reconstruction images. Observers provided a diagnosis and decision confidence. Time to review each image was recorded.Receiver operating characteristic area under the curve revealed overall no significant difference (p=0.0636) between pMRI and SOC images. Examining each abnormality, for acute ischemic stroke, there was a significant difference (p=0.0042) with SOC better than pMRI; but for hemorrhage, there was no significant difference (p=0.1950). There was no significant difference in viewing time for pMRI versus SOC (p=0.0766) or abnormality (p=0.3601).The deep learning (DL)-based reconstruction scheme to improve pMRI was successful for hemorrhage, but for acute ischemic stroke the scheme could still be improved. For neurocritical care especially in remote and/or resource poor locations, pMRI has significant clinical utility, although radiologists should be aware of limitations of low-field MRI devices in overall quality and take that into account when diagnosing. As an initial triage to aid in the decision of whether to transport or keep patients on site, pMRI images likely provide enough information.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
慕青应助可乐采纳,获得10
刚刚
无花果应助禾伙人采纳,获得10
刚刚
clean发布了新的文献求助10
刚刚
刚刚
刚刚
1秒前
xxxzzz完成签到 ,获得积分20
1秒前
2秒前
今晚打老虎完成签到,获得积分20
2秒前
失眠念云完成签到 ,获得积分10
3秒前
xuxu完成签到 ,获得积分10
3秒前
eternity136应助比目鱼采纳,获得20
3秒前
Wzy发布了新的文献求助10
3秒前
沉静若山发布了新的文献求助10
3秒前
upupup完成签到,获得积分10
3秒前
4秒前
自由采枫完成签到,获得积分10
4秒前
科研通AI5应助xy采纳,获得10
4秒前
lin发布了新的文献求助10
4秒前
今日不再蛇皇应助jjjh采纳,获得10
4秒前
MIST留下了新的社区评论
4秒前
啊啊啊啊发布了新的文献求助10
4秒前
5秒前
Promise完成签到,获得积分10
5秒前
HHD发布了新的文献求助10
5秒前
adeno发布了新的文献求助30
5秒前
萧匕发布了新的文献求助10
5秒前
北彧发布了新的文献求助10
6秒前
6秒前
大个应助小可采纳,获得10
6秒前
6秒前
蛋白完成签到,获得积分10
6秒前
yunjian1583发布了新的文献求助10
7秒前
小郝同学发布了新的文献求助10
7秒前
7秒前
可爱的函函应助123采纳,获得10
8秒前
9秒前
焦糖拿铁完成签到,获得积分20
9秒前
9秒前
鬼才之眼发布了新的文献求助10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Theory of Block Polymer Self-Assembly 750
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3514020
求助须知:如何正确求助?哪些是违规求助? 3096358
关于积分的说明 9231395
捐赠科研通 2791445
什么是DOI,文献DOI怎么找? 1531886
邀请新用户注册赠送积分活动 711660
科研通“疑难数据库(出版商)”最低求助积分说明 706931