已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

PrivacyAsst: Safeguarding User Privacy in Tool-Using Large Language Model Agents

计算机科学 保护 计算机安全 信息隐私 互联网隐私 医学 护理部
作者
Xinyu Zhang,Huiyu Xu,Zhongjie Ba,Zhibo Wang,Yuan Hong,Jian Liu,Zhan Qin,Kui Ren
出处
期刊:IEEE Transactions on Dependable and Secure Computing [Institute of Electrical and Electronics Engineers]
卷期号:21 (6): 5242-5258 被引量:12
标识
DOI:10.1109/tdsc.2024.3372777
摘要

Swift advancements in large language model (LLM) technologies lead to widespread research and applications, particularly in integrating LLMs with auxiliary tools, known as tool-using LLM agents. However, amid user interactions, the transmission of private information to both LLMs and tools poses considerable privacy risks to users. In this paper, we delve into current privacy-preserving solutions for LLMs and outline three pivotal challenges for tool-using LLM agents: generalization to both open-source and closed-source LLMs and tools, compliance with privacy requirements, and applicability to unrestricted tasks. To tackle these challenges, we present PrivacyAsst, the first privacy-preserving framework tailored for tool-using LLM agents, encompassing two solutions for different application scenarios. First, we incorporate a homomorphic encryption scheme to ensure computational security guarantees for users as a safeguard against both open-source and closed-source LLMs and tools. Moreover, we propose a shuffling-based solution to broaden the framework's applicability to unrestricted tasks. This solution employs an attribute-based forgery generative model and an attribute shuffling mechanism to craft privacy-preserving requests, effectively concealing individual inputs. Additionally, we introduce an innovative privacy concept, $t$ -closeness in image data, for privacy compliance within this solution. Finally, we implement PrivacyAsst, accompanied by two case studies, demonstrating its effectiveness in advancing privacy-preserving artificial intelligence.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
初次完成签到 ,获得积分10
2秒前
3秒前
汉堡包应助guoll采纳,获得10
4秒前
7秒前
乐观海云发布了新的文献求助30
8秒前
胖咚咚完成签到 ,获得积分10
8秒前
8秒前
8秒前
9秒前
专注的青发布了新的文献求助30
9秒前
10秒前
11秒前
清风徐来发布了新的文献求助10
12秒前
TY发布了新的文献求助10
12秒前
栗2发布了新的文献求助10
12秒前
科研通AI5应助qiuxiaoting采纳,获得10
13秒前
小二郎应助xiaogui采纳,获得10
14秒前
potatobo发布了新的文献求助10
15秒前
16秒前
16秒前
16秒前
16秒前
Hany发布了新的文献求助10
16秒前
17秒前
酷波er应助科研通管家采纳,获得10
17秒前
Owen应助科研通管家采纳,获得10
17秒前
ding应助科研通管家采纳,获得10
17秒前
17秒前
爱静静应助科研通管家采纳,获得10
17秒前
17秒前
想喝冰美发布了新的文献求助30
18秒前
小二郎应助qqa采纳,获得10
19秒前
19秒前
FashionBoy应助小稻草人采纳,获得30
20秒前
大模型应助邱小七采纳,获得10
20秒前
皮卡丘发布了新的文献求助10
21秒前
Hany完成签到,获得积分10
22秒前
22秒前
虚幻幻嫣完成签到 ,获得积分10
22秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3555447
求助须知:如何正确求助?哪些是违规求助? 3131097
关于积分的说明 9390003
捐赠科研通 2830593
什么是DOI,文献DOI怎么找? 1556091
邀请新用户注册赠送积分活动 726459
科研通“疑难数据库(出版商)”最低求助积分说明 715756