已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Direct Machine Learning Predictions of C3 Pathways

材料科学 人工智能 计算机科学
作者
Mingzi Sun,Bolong Huang
出处
期刊:Advanced Energy Materials [Wiley]
被引量:1
标识
DOI:10.1002/aenm.202400152
摘要

Abstract The C 3 pathways of CO 2 reduction reaction (CO 2 RR) lead to the generation of high‐value‐added chemicals for broad industrial applications, which are still challenging for current electrocatalysis. Only limited electrocatalysts have been reported with the ability to achieve C 3 products while the corresponding reaction mechanisms are highly unclear. To overcome such challenges, the first‐principle machine learning (FPML) technique on graphdiyne‐based atomic catalysts (GDY‐ACs) is introduced to directly predict the reaction trends for the key C─C─C coupling processes and the conversions to different C 3 products for the first time. All the prediction results are obtained only based on the learning dataset constructed by density functional theory (DFT) calculation results for C 1 and C 2 pathways, offering an efficient approach to screen promising electrocatalyst candidates for varied C 3 products. More importantly, the ML predictions not only reveal the significant role of the neighboring effect and the small–large integrated cycle mechanisms but also supply important insights into the C─C─C coupling processes for understanding the competitive reactions among C 1 to C 3 pathways. This work has offered an advanced breakthrough for the complicated CO 2 RR processes, accelerating the future design of novel ACs for C 3 products with high efficiency and selectivity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
所所应助Anzu采纳,获得10
1秒前
3秒前
bkagyin应助ningmengcao采纳,获得10
3秒前
tiny1111完成签到 ,获得积分10
4秒前
齐齐巴宾发布了新的文献求助100
4秒前
坚强冰蝶完成签到,获得积分10
4秒前
YQJ完成签到,获得积分10
6秒前
今后应助cyuan采纳,获得10
6秒前
7秒前
Lucas应助Liqy采纳,获得10
9秒前
山奈完成签到 ,获得积分10
10秒前
小学生完成签到 ,获得积分10
11秒前
11秒前
柔弱翎完成签到 ,获得积分20
13秒前
莉仔完成签到,获得积分20
13秒前
14秒前
16秒前
淡定的幻枫完成签到 ,获得积分10
17秒前
Akim应助ComeOn采纳,获得10
19秒前
科研通AI5应助青花采纳,获得10
20秒前
含糊的泥猴桃完成签到 ,获得积分10
20秒前
Liqy发布了新的文献求助10
21秒前
柔弱翎关注了科研通微信公众号
21秒前
柠木完成签到 ,获得积分10
21秒前
艳子发布了新的文献求助10
22秒前
22秒前
树脂小柴发布了新的文献求助10
23秒前
土豆发布了新的文献求助10
23秒前
鱼与木头发布了新的文献求助10
26秒前
flora发布了新的文献求助30
27秒前
28秒前
英姑应助Liqy采纳,获得10
28秒前
mint-WANG完成签到,获得积分10
28秒前
30秒前
30秒前
31秒前
31秒前
CipherSage应助flora采纳,获得10
31秒前
屠俊豪发布了新的文献求助10
32秒前
33秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3953289
求助须知:如何正确求助?哪些是违规求助? 3498662
关于积分的说明 11092681
捐赠科研通 3229194
什么是DOI,文献DOI怎么找? 1785223
邀请新用户注册赠送积分活动 869365
科研通“疑难数据库(出版商)”最低求助积分说明 801435