亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Diagnosis of intracranial aneurysms by computed tomography angiography using deep learning-based detection and segmentation

医学 队列 放射科 Sørensen–骰子系数 数字减影血管造影 计算机断层血管造影 分割 狭窄 蛛网膜下腔出血 血管造影 回顾性队列研究 核医学 外科 人工智能 内科学 图像分割 计算机科学
作者
Wei You,Junqiang Feng,Jing Lu,Ting Chen,Xinke Liu,Zhenhua Wu,Guoyang Gong,Yutong Sui,Yanwen Wang,Yifan Zhang,Wanxing Ye,Xiheng Chen,Jian Lv,Dachao Wei,Yudi Tang,Dingwei Deng,Siming Gui,Lin Jun,Peike Chen,Li Wang,Wentao Gong,Yang Wang,Chengcheng Zhu,Yue Zhang,David Saloner,Dimitrios Mitsouras,Sheng Guan,Youxiang Li,Yuhua Jiang,Yan Wang
出处
期刊:Journal of NeuroInterventional Surgery [BMJ]
卷期号:: jnis-021022 被引量:1
标识
DOI:10.1136/jnis-2023-021022
摘要

Background Detecting and segmenting intracranial aneurysms (IAs) from angiographic images is a laborious task. Objective To evaluates a novel deep-learning algorithm, named vessel attention (VA)-Unet, for the efficient detection and segmentation of IAs. Methods This retrospective study was conducted using head CT angiography (CTA) examinations depicting IAs from two hospitals in China between 2010 and 2021. Training included cases with subarachnoid hemorrhage (SAH) and arterial stenosis, common accompanying vascular abnormalities. Testing was performed in cohorts with reference-standard digital subtraction angiography (cohort 1), with SAH (cohort 2), acquired outside the time interval of training data (cohort 3), and an external dataset (cohort 4). The algorithm’s performance was evaluated using sensitivity, recall, false positives per case (FPs/case), and Dice coefficient, with manual segmentation as the reference standard. Results The study included 3190 CTA scans with 4124 IAs. Sensitivity, recall, and FPs/case for detection of IAs were, respectively, 98.58%, 96.17%, and 2.08 in cohort 1; 95.00%, 88.8%, and 3.62 in cohort 2; 96.00%, 93.77%, and 2.60 in cohort 3; and, 96.17%, 94.05%, and 3.60 in external cohort 4. The segmentation accuracy, as measured by the Dice coefficient, was 0.78, 0.71, 0.71, and 0.66 for cohorts 1–4, respectively. VA-Unet detection recall and FPs/case and segmentation accuracy were affected by several clinical factors, including aneurysm size, bifurcation aneurysms, and the presence of arterial stenosis and SAH. Conclusions VA-Unet accurately detected and segmented IAs in head CTA comparably to expert interpretation. The proposed algorithm has significant potential to assist radiologists in efficiently detecting and segmenting IAs from CTA images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
30秒前
陈媛发布了新的文献求助10
34秒前
手帕很忙完成签到,获得积分10
50秒前
lucfer完成签到 ,获得积分10
1分钟前
zxq1996完成签到 ,获得积分10
1分钟前
2分钟前
研友_Lw46dn完成签到,获得积分20
4分钟前
5分钟前
194711发布了新的文献求助10
5分钟前
Wilson完成签到 ,获得积分10
6分钟前
桐桐应助PDY采纳,获得10
6分钟前
暮迟途远完成签到,获得积分10
7分钟前
8分钟前
PDY发布了新的文献求助10
8分钟前
彩色莞完成签到 ,获得积分10
8分钟前
PDY完成签到,获得积分10
8分钟前
wsh完成签到 ,获得积分10
9分钟前
9分钟前
oaoalaa完成签到 ,获得积分10
11分钟前
kaka完成签到,获得积分10
11分钟前
ddd完成签到 ,获得积分10
11分钟前
笨蛋小狗梦想为春日半岛蹦极完成签到,获得积分10
12分钟前
鳗鱼鱼完成签到 ,获得积分10
13分钟前
194711发布了新的文献求助10
14分钟前
14分钟前
万能图书馆应助Luis采纳,获得10
14分钟前
爱静静应助194711采纳,获得30
14分钟前
ho完成签到,获得积分10
15分钟前
16分钟前
JZ完成签到,获得积分10
17分钟前
JZ发布了新的文献求助10
17分钟前
18分钟前
Owen应助陈媛采纳,获得10
18分钟前
章鱼完成签到,获得积分10
19分钟前
21分钟前
陈媛发布了新的文献求助10
21分钟前
kuoping完成签到,获得积分10
21分钟前
23分钟前
PD完成签到,获得积分10
23分钟前
24分钟前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3150609
求助须知:如何正确求助?哪些是违规求助? 2802008
关于积分的说明 7846065
捐赠科研通 2459372
什么是DOI,文献DOI怎么找? 1309219
科研通“疑难数据库(出版商)”最低求助积分说明 628696
版权声明 601757