Accuracy improvement of the load forecasting in the district heating system by the informer-based framework with the optimal step size selection

平均绝对百分比误差 均方误差 支持向量机 选择(遗传算法) 计算机科学 人工神经网络 数据挖掘 统计 机器学习 数学
作者
Ji Zhang,Yuxin Hu,Yonggong Yuan,Han Yuan,Ning Mei
出处
期刊:Energy [Elsevier BV]
卷期号:291: 130347-130347 被引量:11
标识
DOI:10.1016/j.energy.2024.130347
摘要

Accurate load forecasting is crucial for effectively regulating regional heat network systems. However, existing forecasting methods often rely on subjective experience to determine the forecasting step, which is limited by the presence of thermal inertia, leading to suboptimal accuracy. To address this limitation, an optimal step size selection method based on the Informer-based framework is proposed to enhance load forecasting accuracy in heat exchange stations. This method leverages the Attention mechanism within the Informer model, enabling the capture of global information in a single step. To verify the effectiveness of the proposed method, real operational data from a typical thermal power plant in North China is utilized to analyze and test the impact of data distribution and prediction step size on the model's prediction capability. The performance is evaluated using Mean Square Error (MSE), Mean Absolute Error (MAE), and Mean Absolute Percentage Error (MAPE). Comparative analysis against Support Vector Regression (SVR) and Long Short-Term Memory (LSTM) models demonstrates that the Informer algorithm with optimal prediction step size achieves the highest prediction accuracy. Notably, the proposed method achieved a minimum reduction of 62.7 %, 46.5 %, and 42.9 % in MSE, MAE, and MAPE, respectively, significantly surpassing the performance of alternative prediction methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
山茶完成签到,获得积分20
1秒前
1秒前
隐形曼青应助猪猪hero采纳,获得10
1秒前
wangliang0329完成签到,获得积分10
1秒前
呐呐呐完成签到 ,获得积分10
2秒前
2秒前
2秒前
852应助龙韵采纳,获得10
2秒前
情怀应助CRUISE采纳,获得10
3秒前
dingding发布了新的文献求助30
5秒前
WJ发布了新的文献求助10
5秒前
5秒前
5秒前
刘爽应助Xe采纳,获得10
6秒前
xyx发布了新的文献求助20
6秒前
7秒前
核桃应助jie采纳,获得10
7秒前
7秒前
7秒前
Fine完成签到,获得积分10
7秒前
8秒前
8秒前
8秒前
XudongHou发布了新的文献求助10
8秒前
8秒前
777777777完成签到,获得积分10
10秒前
杜不腾完成签到,获得积分10
10秒前
11秒前
xy发布了新的文献求助10
11秒前
zzzzzz发布了新的文献求助10
12秒前
wade完成签到,获得积分10
12秒前
冷酷的玉米完成签到,获得积分20
12秒前
小小发布了新的文献求助10
12秒前
木直发布了新的文献求助30
13秒前
13秒前
学术laji发布了新的文献求助10
13秒前
FashionBoy应助土豪的冰蓝采纳,获得10
14秒前
15秒前
15秒前
葡萄完成签到,获得积分10
16秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Treatise on Geochemistry 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954873
求助须知:如何正确求助?哪些是违规求助? 3500946
关于积分的说明 11101499
捐赠科研通 3231364
什么是DOI,文献DOI怎么找? 1786402
邀请新用户注册赠送积分活动 870037
科研通“疑难数据库(出版商)”最低求助积分说明 801771