Tree species diversity mapping from spaceborne optical images: The effects of spectral and spatial resolution

遥感 多样性(政治) 图像分辨率 地理 树(集合论) 环境科学 地图学 人工智能 计算机科学 数学 数学分析 社会学 人类学
作者
Xiang Liu,Julian Frey,Catalina Munteanu,Martin Denter,Barbara Koch
出处
期刊:Remote Sensing in Ecology and Conservation [Wiley]
标识
DOI:10.1002/rse2.383
摘要

Abstract Increasingly available spaceborne sensors provide unprecedented opportunities for large‐scale, timely and continuous tree species diversity (TSD) monitoring. However, given differences in spectral and spatial resolutions, the choice of sensor is not always straightforward. In this work, we investigated the effects of spatial and spectral resolutions for four spaceborne sensors (RapidEye, Landsat‐8, Sentinel‐2 and PlanetScope) on TSD mapping in an area of approximately 4000 km 2 within the Black Forest, Germany. We employed a random forest (RF) regression model to predict Shannon–Wiener diversity based on seven types of spectral heterogeneity metrics (texture, coefficient of variation, Rao's Q, convex hull volume, spectral angle mapper, convex hull area and spectral species diversity) and a full survey dataset from 135 one‐ha sample plots. We compared the RF model's performance across sensors and spatial resolutions. Our results demonstrated that the Sentinel‐2‐based TSD model achieved the highest accuracy (mean R 2 : 0.477, mean root‐mean‐square error (RMSE): 0.274). The RapidEye‐based TSD model produced lower accuracy (mean R 2 : 0.346, mean RMSE: 0.303), but it was better than the PlanetScope‐ and Landsat‐based TSD models. The 10 m (for Sentinel‐2 and RapidEye) and 15 m (for PlanetScope) were the best spatial resolutions for predicting TSD. The NIR band was the most favourable spectral band for predicting TSD. Texture metrics and Rao's Q outperformed the other spectral heterogeneity metrics. Our results highlighted that spaceborne optical imagery (especially Sentinel‐2) can be successfully used for large‐scale TSD mapping but that the choice of sensors can significantly affect the resulting mapping accuracy in temperate montane forests.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
abai完成签到,获得积分10
刚刚
彳亍而上学完成签到,获得积分10
刚刚
许子健发布了新的文献求助10
1秒前
Xander发布了新的文献求助10
1秒前
所所应助山山而川采纳,获得10
1秒前
忐忑的烤鸡完成签到,获得积分10
3秒前
3秒前
喵2发布了新的文献求助10
4秒前
Russell完成签到,获得积分10
4秒前
有梦不觉人生寒完成签到 ,获得积分10
5秒前
6秒前
自觉忆山完成签到,获得积分10
7秒前
sht应助DQY采纳,获得10
7秒前
糊糊完成签到 ,获得积分10
7秒前
善学以致用应助chufan采纳,获得10
9秒前
10秒前
11秒前
ssk发布了新的文献求助10
12秒前
大个应助Lee采纳,获得20
13秒前
喵2完成签到,获得积分10
13秒前
13秒前
15秒前
15秒前
科研混子表锅完成签到,获得积分10
15秒前
鲤鱼奇异果完成签到,获得积分10
16秒前
在水一方应助sht采纳,获得10
17秒前
liaomr发布了新的文献求助10
18秒前
19秒前
19秒前
山山而川发布了新的文献求助10
19秒前
大模型应助周先森采纳,获得10
19秒前
linmo发布了新的文献求助10
19秒前
木通完成签到,获得积分10
21秒前
21秒前
酷波er应助科研通管家采纳,获得10
21秒前
英俊的铭应助科研通管家采纳,获得10
21秒前
搜集达人应助科研通管家采纳,获得10
22秒前
香蕉觅云应助科研通管家采纳,获得10
22秒前
今后应助科研通管家采纳,获得20
22秒前
无花果应助科研通管家采纳,获得10
22秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966430
求助须知:如何正确求助?哪些是违规求助? 3511854
关于积分的说明 11160310
捐赠科研通 3246555
什么是DOI,文献DOI怎么找? 1793425
邀请新用户注册赠送积分活动 874438
科研通“疑难数据库(出版商)”最低求助积分说明 804388