材料科学
吸附
化学工程
废水
基质(水族馆)
图层(电子)
纳米线
金属有机骨架
离子交换
纳米晶
纳米技术
离子
化学
有机化学
环境工程
地质学
工程类
海洋学
作者
Wenxiu Gan,Ziyang Zheng,Jiawei Yan,Xi He,Zanyong Zhuang,Feifei Chen,Yan Yu
标识
DOI:10.1016/j.apsusc.2023.159253
摘要
Flexible metal–organic framework (MOF) films are greatly desired for the separation of hazardous molecules and ions from wastewater. The current MOF films are usually horizontally deposited on the substrates, and thus restricted by brittleness, low exposure of surface area, as well as poor separation functions. Here, an organic–inorganic mixed substrate is firstly fabricated by growing hydroxyapatite (HA) nanowire arrays on the cellulose fiber (CF). Subsequently, MIL-100(Fe) nanocrystals are assembled on the surfaces of HA nanowire arrays through a layer-by-layer manner, leading to a unique vertical MOF film. The resulting vertical MOF films show competitive advantages over the horizontal counterparts: (i) they show excellent flexibility and they are tolerant to serious physical damage; (ii) they have multiple separation functions including ion exchange of HA, excellent adsorption of MOFs, and strong electrostatic interaction of CF; and (iii) the agglomeration of MIL-100(Fe) nanocrystals is effectively suppressed. Therefore, the average roughness, specific surface area, and average pore size of films are optimized. As a result, the vertical MOF films show universal separation of positively/negatively-charged dyes and Pb2+ ion, with high removal rates of > 94 %. More appealing, the mixed pollutants in the complex wastewater can be one-step separated through the vertical MOF films, with high removal rates of > 96 %.
科研通智能强力驱动
Strongly Powered by AbleSci AI