材料科学
聚乙二醇
化学工程
复合数
电解质
阳极
PEG比率
离子电导率
复合材料
电极
财务
工程类
物理化学
经济
化学
作者
Steven Kmiec,Erick Ruoff,Joe Darga,Andrew M. Bodratti,Arumugam Manthiram
标识
DOI:10.1021/acsami.3c00240
摘要
In this work, we report a method for producing a thin (<50 μm), mechanically robust, sodium-ion conducting composite solid electrolyte (CSE) by infiltrating the monomers of polyethylene glycol diacrylate (PEGDA) and polyethylene glycol (PEG) and either NaClO4 or NaFSI salt into a silica-based glass-fiber matrix, followed by an UV-initiated in situ polymerization. The glass fiber matrix provided mechanical strength to the CSE and enabled a robust, self-supporting separator. This strategy enabled the development of CSEs with high loadings of PEG as a plasticizer to enhance the ionic conductivity. The fabrication of these CSEs was done under ambient conditions, which was highly scalable and can be easily implemented in roll-to-roll processing. While NaClO4 was found to be unstable with the sodium-metal anode, the use of a NaFSI salt was found to promote stable stripping and plating in a symmetric cell, reaching current densities of as high as 0.67 mA cm-2 at 60 °C. The PEGDA + PEG + NaFSI separators were then used to form solid-state full cells with a cobalt-free, low-nickel layered Na2/3Ni1/3Mn2/3O2 cathode and a sodium-metal anode, achieving a full capacity utilization exhibiting 70% capacity retention after 50 cycles at a cycling rate of C/5 at 60 °C.
科研通智能强力驱动
Strongly Powered by AbleSci AI