A biospectroscopic approach toward colorectal cancer diagnosis from bodily fluid samples via ATR–MIR spectroscopy combined with multivariate data analysis

多元统计 多元分析 结直肠癌 唾液 光谱学 衰减全反射 癌症 生物流体 结肠镜检查 计算生物学 人工智能 红外光谱学 医学 化学 内科学 色谱法 计算机科学 生物 机器学习 物理 量子力学 有机化学
作者
Fuzuli Tuğrul,Gonul Akin Geyik,Berrin Yalınbaş Kaya,Betül Peker Cengiz,Şükriye Nihan Karuk Elmas,İbrahim Yılmaz,Fatma Nur Arslan
出处
期刊:Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy [Elsevier]
卷期号:304: 123342-123342 被引量:3
标识
DOI:10.1016/j.saa.2023.123342
摘要

In this study, a biospectroscopic approach was reported for the detection of spectral changes and biomarkers for the diagnosis of colorectal cancer (CC) cases from different bodily fluids (blood plasma, blood serum, saliva and colonoscopy disinfection/wash fluids) by using attenuated total reflection-mid infrared (ATR-MIR) spectroscopy. To recognize the molecular level changes in the spectral characteristics of CC and their healthy/control (CH) groups, different multivariate data analyses (HCA, LDA, PCA and SIMCA) were successfully performed over the data of ATR-MIR spectroscopy. Two hundred specimens were characterized in detail over the data of spectral regions (4000-650 cm-1 and regions V-XXII). The findings revealed that significant changes were clearly observed in the concentrations of lipid, protein, nucleic acid and carbohydrate biomolecules for cancer cases based upon their necessity to overcome energy requirements. Supervised multivariate data methodology SIMCA, presented an excellent classification for the studied groups; similarly 100% of the specimens from different bodily fluids were correctly classified by supervised methodology LDA. As a result, the developed ATR-MIR methodology for the classification of CC and their healthy groups highlighted a rapid cancer diagnosis approach from different bodily fluids; therefore, it could be guide to make well decision before histopathological assessment and to screen CC populations existing in society.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助心灵美秋灵采纳,获得10
刚刚
1秒前
倪吉旭完成签到,获得积分10
2秒前
HXia完成签到,获得积分10
2秒前
2秒前
打打应助金jin采纳,获得10
2秒前
2秒前
yuxiazhengye应助YoluRaven采纳,获得10
3秒前
4秒前
俏皮凡梦发布了新的文献求助10
4秒前
CodeCraft应助润润轩轩采纳,获得10
5秒前
5秒前
小底发布了新的文献求助10
5秒前
HXia发布了新的文献求助10
5秒前
6秒前
典雅的静发布了新的文献求助10
6秒前
WendyWen发布了新的文献求助10
6秒前
科研通AI5应助加油嘎嘎嘎采纳,获得10
7秒前
领导范儿应助小王采纳,获得10
8秒前
8秒前
8秒前
1234发布了新的文献求助10
8秒前
8秒前
9秒前
9秒前
ding应助zcc111采纳,获得10
10秒前
要减肥的湘云完成签到,获得积分10
10秒前
勤恳函发布了新的文献求助30
10秒前
星海梦幻发布了新的文献求助30
11秒前
啊啊啊啊发布了新的文献求助10
11秒前
丘比特应助HXia采纳,获得30
12秒前
小底完成签到,获得积分10
12秒前
12秒前
练习者发布了新的文献求助10
12秒前
12秒前
今天吃什么呢完成签到,获得积分10
12秒前
传奇3应助sinan采纳,获得10
12秒前
王子安举报欧阳求助涉嫌违规
13秒前
sncn完成签到,获得积分10
13秒前
11111发布了新的文献求助10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 610
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Time Matters: On Theory and Method 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3559395
求助须知:如何正确求助?哪些是违规求助? 3134035
关于积分的说明 9405099
捐赠科研通 2834084
什么是DOI,文献DOI怎么找? 1557841
邀请新用户注册赠送积分活动 727741
科研通“疑难数据库(出版商)”最低求助积分说明 716399