已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Multicue Contrastive Self-Supervised Learning for Change Detection in Remote Sensing

像素 人工智能 计算机科学 模式识别(心理学) 特征(语言学) 变更检测 图像(数学) 计算机视觉 哲学 语言学
作者
Meijuan Yang,Licheng Jiao,Fang Liu,Biao Hou,Shuyuan Yang,Yake Zhang,Jianlong Wang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-14 被引量:2
标识
DOI:10.1109/tgrs.2023.3330494
摘要

Contrastive self-supervised learning (CSSL) is a promising method in extracting effective features from unlabeled data. It performs well in image-level tasks, such as image classification and retrieval. However, the existing CSSL methods are not suitable for pixel-level tasks, e.g., change detection (CD), since they ignore the correlation between local patches or pixels. In this paper, we firstly propose a multi-cue contrastive self-supervised learning (MC-CSSL) method to derive dense features for change detection. Besides data augmentation, the MC-CSSL takes advantage of more cues based on the semantic meaning and temporal correlation of local patches. Specially, the positive pair is built from local patches with the similar semantic meaning or temporal ones with the same geographic location. The assumption is that local patches belonging to the same kind of land-covering tend to share similar features. Secondly, the affinity matrix is truncated and introduced to extract change information between two temporal patches obtained from different types of sensors. As a result, some initial unchanged pixels are selected to serve as the supervision for mapping the dense features into a consistent space. Based on the distance between all bi-temporal pixels in the consistent space, a difference image (DI) is generated and more unchanged pixels can be available. The dense feature mapping and unchanged pixel updating proceed alternately. The proposed CD method is evaluated in both homogeneous and heterogeneous cases and the experimental results demonstrate its effectiveness and priority after comparison with some existing state-of-the-art methods. The source code will be available at https://github.com/Yang202308/ChangeDetection_CSSL.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
bkagyin应助wq采纳,获得10
2秒前
liangxiao发布了新的文献求助150
4秒前
kingwill应助燃之一手采纳,获得20
4秒前
6秒前
present发布了新的文献求助10
6秒前
桐桐应助飞一般的亮哥采纳,获得10
6秒前
raycee发布了新的文献求助10
9秒前
10秒前
10秒前
科研通AI5应助是漏漏呀采纳,获得10
13秒前
科研通AI5应助花花采纳,获得10
13秒前
present完成签到,获得积分10
14秒前
辉hui发布了新的文献求助10
14秒前
聪慧寄凡发布了新的文献求助10
15秒前
16秒前
淡定的大船完成签到,获得积分10
16秒前
小徐完成签到,获得积分10
17秒前
18秒前
科目三应助唐山夕采纳,获得30
19秒前
22完成签到 ,获得积分20
19秒前
Quanquan完成签到 ,获得积分10
21秒前
21秒前
CodeCraft应助ZSM911采纳,获得10
23秒前
24秒前
是漏漏呀发布了新的文献求助10
24秒前
24秒前
sheldon发布了新的文献求助10
26秒前
26秒前
小蘑菇应助聪慧寄凡采纳,获得10
27秒前
以菱完成签到 ,获得积分10
27秒前
烤地瓜完成签到,获得积分10
28秒前
NexusExplorer应助SAS采纳,获得10
28秒前
无情的葡萄完成签到,获得积分10
29秒前
29秒前
29秒前
29秒前
大喜子给大喜子的求助进行了留言
29秒前
gq0401发布了新的文献求助10
30秒前
33秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3484036
求助须知:如何正确求助?哪些是违规求助? 3073176
关于积分的说明 9129919
捐赠科研通 2764838
什么是DOI,文献DOI怎么找? 1517444
邀请新用户注册赠送积分活动 702119
科研通“疑难数据库(出版商)”最低求助积分说明 701009