作者
Aissam Djahnine,Carole Lazarus,Mathieu Léderlin,Sébastien Mulé,Rafael Wiemker,Salim Si‐Mohamed,Emilien Jupin‐Delevaux,Olivier Nempont,Youssef Skandarani,Mathieu De Craene,Sègbédji Goubalan,Caroline Raynaud,Younes Belkouchi,Amira Ben Afia,Clement Fabre,G. Ferretti,Constance de Margerie‐Mellon,Pierre Berge,Renan Liberge,Nicolas Elbaz,Maxime Blain,Pierre‐Yves Brillet,Guillaume Chassagnon,Farah Cadour,Caroline Caramella,Mostafa El Hajjam,Samia Boussouar,Joya Hadchiti,Xavier Fablet,Antoine Khalil,Hugues Talbot,Alain Luciani,Nathalie Lassau,Loïc Boussel
摘要
The purpose of this study was to propose a deep learning-based approach to detect pulmonary embolism and quantify its severity using the Qanadli score and the right-to-left ventricle diameter (RV/LV) ratio on three-dimensional (3D) computed tomography pulmonary angiography (CTPA) examinations with limited annotations.