Q-learning-based unmanned aerial vehicle path planning with dynamic obstacle avoidance

避障 运动规划 计算机科学 障碍物 路径(计算) 任意角度路径规划 Dijkstra算法 最短路径问题 强化学习 人工智能 快速通道 避碰 图形 实时计算 数学优化 移动机器人 机器人 理论计算机科学 数学 碰撞 计算机网络 计算机安全 政治学 法学
作者
Amala Sonny,Sreenivasa Reddy Yeduri,Linga Reddy Cenkeramaddi
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:147: 110773-110773 被引量:22
标识
DOI:10.1016/j.asoc.2023.110773
摘要

Recently, unmanned aerial vehicles (UAVs) have shown promising results for autonomous sensing. UAVs have been deployed for multiple applications that include surveillance, mapping, tracking, and search operations. Finding an efficient path between a source and a goal is a critical issue that has been the focus of recent exploration. Many path-planning algorithms are utilized to find an efficient path for a UAV to navigate from a source to a goal with obstacle avoidance. Despite the extensive literature and numerous research proposals for path planning, dynamic obstacle avoidance has not been addressed with machine learning. When the obstacles are dynamic, i.e., they can change their position over time, and the constraints of the path planning algorithm become more challenging. This in turn adds a layer of complexity to the path planning algorithm. To address this challenge, a Q-learning algorithm is proposed in this work to facilitate efficient path planning for UAVs with both static and dynamic obstacle avoidance. We introduced the Shortest Distance Prioritization policy in the learning process which marginally reduces the distance that the UAV has to travel to reach the goal. Further, the proposed Q-learning algorithm adopts a grid-graph-based method to solve the path-planning problem. It learns to maximize the reward based on the agent's behavior in the environment. Through results, the performance comparison between the proposed approach and state-of-the-art path planning approaches such as A-star, Dijkstra, and Sarsa algorithms are evaluated in terms of learning time and path length. We show through results that the proposed approach results in improved performance when compared to state-of-the-art approaches. Further, the effect of an increased number of obstacles are evaluated on the performance of the proposed approach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sokach发布了新的文献求助10
刚刚
缓慢荔枝发布了新的文献求助10
刚刚
123发布了新的文献求助10
1秒前
天御雪完成签到,获得积分10
1秒前
gen关闭了gen文献求助
1秒前
1秒前
科研通AI5应助oldlee采纳,获得10
2秒前
2秒前
MADKAI发布了新的文献求助10
2秒前
哈哈悦完成签到,获得积分10
2秒前
赘婿应助duoduozs采纳,获得10
2秒前
kai完成签到,获得积分10
3秒前
3秒前
情怀应助xhy采纳,获得10
3秒前
整齐的灭绝完成签到 ,获得积分10
4秒前
充电宝应助船舵采纳,获得10
4秒前
lqphysics完成签到,获得积分10
4秒前
4秒前
小小完成签到 ,获得积分10
5秒前
320me666完成签到,获得积分10
6秒前
6秒前
velpro发布了新的文献求助10
7秒前
科研通AI5应助masu采纳,获得10
7秒前
小狸跟你拼啦完成签到,获得积分10
7秒前
寂寞的灵发布了新的文献求助10
7秒前
8秒前
honey完成签到,获得积分10
8秒前
白宝宝北北白应助eee采纳,获得10
8秒前
gcc应助HZW采纳,获得20
9秒前
9秒前
完美世界应助Hu111采纳,获得10
10秒前
khaosyi完成签到 ,获得积分10
11秒前
哇哈哈完成签到,获得积分10
12秒前
12秒前
buno应助啦啦采纳,获得10
13秒前
Mike完成签到,获得积分10
13秒前
13秒前
顾矜应助chen采纳,获得10
14秒前
科研通AI5应助小王采纳,获得10
14秒前
GGBond完成签到,获得积分10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672