Q-learning-based unmanned aerial vehicle path planning with dynamic obstacle avoidance

避障 运动规划 计算机科学 障碍物 路径(计算) 任意角度路径规划 Dijkstra算法 最短路径问题 强化学习 人工智能 快速通道 避碰 图形 实时计算 数学优化 移动机器人 机器人 理论计算机科学 数学 碰撞 计算机网络 计算机安全 政治学 法学
作者
Amala Sonny,Sreenivasa Reddy Yeduri,Linga Reddy Cenkeramaddi
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:147: 110773-110773 被引量:35
标识
DOI:10.1016/j.asoc.2023.110773
摘要

Recently, unmanned aerial vehicles (UAVs) have shown promising results for autonomous sensing. UAVs have been deployed for multiple applications that include surveillance, mapping, tracking, and search operations. Finding an efficient path between a source and a goal is a critical issue that has been the focus of recent exploration. Many path-planning algorithms are utilized to find an efficient path for a UAV to navigate from a source to a goal with obstacle avoidance. Despite the extensive literature and numerous research proposals for path planning, dynamic obstacle avoidance has not been addressed with machine learning. When the obstacles are dynamic, i.e., they can change their position over time, and the constraints of the path planning algorithm become more challenging. This in turn adds a layer of complexity to the path planning algorithm. To address this challenge, a Q-learning algorithm is proposed in this work to facilitate efficient path planning for UAVs with both static and dynamic obstacle avoidance. We introduced the Shortest Distance Prioritization policy in the learning process which marginally reduces the distance that the UAV has to travel to reach the goal. Further, the proposed Q-learning algorithm adopts a grid-graph-based method to solve the path-planning problem. It learns to maximize the reward based on the agent's behavior in the environment. Through results, the performance comparison between the proposed approach and state-of-the-art path planning approaches such as A-star, Dijkstra, and Sarsa algorithms are evaluated in terms of learning time and path length. We show through results that the proposed approach results in improved performance when compared to state-of-the-art approaches. Further, the effect of an increased number of obstacles are evaluated on the performance of the proposed approach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
YangXiao完成签到 ,获得积分10
1秒前
于佳发布了新的文献求助10
2秒前
ding应助ayintree采纳,获得10
2秒前
嘻嘻完成签到,获得积分10
2秒前
LAN发布了新的文献求助10
4秒前
豆沙包完成签到 ,获得积分10
4秒前
4秒前
量子星尘发布了新的文献求助10
6秒前
灵巧伊完成签到,获得积分10
12秒前
小张完成签到,获得积分10
12秒前
Jasper应助xu采纳,获得10
12秒前
13秒前
奕霖发布了新的文献求助10
14秒前
灵巧伊发布了新的文献求助10
17秒前
18秒前
量子星尘发布了新的文献求助10
18秒前
有魅力晓山完成签到,获得积分20
18秒前
夜无疆完成签到,获得积分10
19秒前
hmhu发布了新的文献求助10
19秒前
20秒前
冷静的荧荧完成签到 ,获得积分10
20秒前
21秒前
21秒前
那时花开发布了新的文献求助50
22秒前
迪克bin完成签到,获得积分10
22秒前
22秒前
华仔应助张娇采纳,获得10
23秒前
健康的肺完成签到,获得积分10
23秒前
现实的天蓝完成签到,获得积分10
25秒前
万能图书馆应助灵巧伊采纳,获得10
26秒前
可爱的函函应助安安滴滴采纳,获得10
29秒前
小蘑菇应助一块小饼干采纳,获得10
29秒前
大个应助undo采纳,获得10
32秒前
大橙子完成签到 ,获得积分10
32秒前
阔达初南完成签到 ,获得积分10
32秒前
34秒前
35秒前
英姑应助泰勒采纳,获得10
37秒前
怪僻完成签到 ,获得积分10
40秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Video: Lagrangian coherent structures in the flow field of a fluidic oscillator 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
List of 1,091 Public Pension Profiles by Region 961
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5449234
求助须知:如何正确求助?哪些是违规求助? 4557441
关于积分的说明 14263406
捐赠科研通 4480448
什么是DOI,文献DOI怎么找? 2454464
邀请新用户注册赠送积分活动 1445168
关于科研通互助平台的介绍 1420965