Q-learning-based unmanned aerial vehicle path planning with dynamic obstacle avoidance

避障 运动规划 计算机科学 障碍物 路径(计算) 任意角度路径规划 Dijkstra算法 最短路径问题 强化学习 人工智能 快速通道 避碰 图形 实时计算 数学优化 移动机器人 机器人 理论计算机科学 数学 碰撞 计算机网络 计算机安全 政治学 法学
作者
Amala Sonny,Sreenivasa Reddy Yeduri,Linga Reddy Cenkeramaddi
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:147: 110773-110773 被引量:63
标识
DOI:10.1016/j.asoc.2023.110773
摘要

Recently, unmanned aerial vehicles (UAVs) have shown promising results for autonomous sensing. UAVs have been deployed for multiple applications that include surveillance, mapping, tracking, and search operations. Finding an efficient path between a source and a goal is a critical issue that has been the focus of recent exploration. Many path-planning algorithms are utilized to find an efficient path for a UAV to navigate from a source to a goal with obstacle avoidance. Despite the extensive literature and numerous research proposals for path planning, dynamic obstacle avoidance has not been addressed with machine learning. When the obstacles are dynamic, i.e., they can change their position over time, and the constraints of the path planning algorithm become more challenging. This in turn adds a layer of complexity to the path planning algorithm. To address this challenge, a Q-learning algorithm is proposed in this work to facilitate efficient path planning for UAVs with both static and dynamic obstacle avoidance. We introduced the Shortest Distance Prioritization policy in the learning process which marginally reduces the distance that the UAV has to travel to reach the goal. Further, the proposed Q-learning algorithm adopts a grid-graph-based method to solve the path-planning problem. It learns to maximize the reward based on the agent's behavior in the environment. Through results, the performance comparison between the proposed approach and state-of-the-art path planning approaches such as A-star, Dijkstra, and Sarsa algorithms are evaluated in terms of learning time and path length. We show through results that the proposed approach results in improved performance when compared to state-of-the-art approaches. Further, the effect of an increased number of obstacles are evaluated on the performance of the proposed approach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ykft发布了新的文献求助10
1秒前
li完成签到,获得积分10
1秒前
认真野狼完成签到,获得积分10
2秒前
终抵星空发布了新的文献求助10
2秒前
常常完成签到 ,获得积分10
2秒前
3秒前
fsznc1完成签到 ,获得积分0
3秒前
韩菡关注了科研通微信公众号
4秒前
4秒前
rodrisk完成签到 ,获得积分10
5秒前
5秒前
FFFFF应助武雨寒采纳,获得10
5秒前
科研狗完成签到 ,获得积分10
6秒前
zhu发布了新的文献求助10
6秒前
6秒前
6秒前
L1完成签到 ,获得积分10
7秒前
小李完成签到,获得积分10
8秒前
8秒前
czj发布了新的文献求助10
9秒前
10秒前
负责灵萱完成签到 ,获得积分10
10秒前
等待的凝芙完成签到,获得积分10
11秒前
小二郎应助来日方长采纳,获得10
11秒前
耶耶完成签到,获得积分10
12秒前
12秒前
13秒前
我在青年湖旁完成签到,获得积分10
13秒前
科研通AI6应助咸鱼采纳,获得10
14秒前
qqq发布了新的文献求助20
15秒前
文静的笑阳完成签到,获得积分10
15秒前
CipherSage应助Zh采纳,获得10
15秒前
16秒前
17秒前
shanlu完成签到,获得积分10
17秒前
英俊的铭应助水123采纳,获得10
18秒前
虚拟的小珍完成签到 ,获得积分10
18秒前
20182531027发布了新的文献求助10
18秒前
chen完成签到,获得积分10
18秒前
鳗鱼匕完成签到 ,获得积分10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5600383
求助须知:如何正确求助?哪些是违规求助? 4686008
关于积分的说明 14841407
捐赠科研通 4676475
什么是DOI,文献DOI怎么找? 2538721
邀请新用户注册赠送积分活动 1505781
关于科研通互助平台的介绍 1471186