Q-learning-based unmanned aerial vehicle path planning with dynamic obstacle avoidance

避障 运动规划 计算机科学 障碍物 路径(计算) 任意角度路径规划 Dijkstra算法 最短路径问题 强化学习 人工智能 快速通道 避碰 图形 实时计算 数学优化 移动机器人 机器人 理论计算机科学 数学 碰撞 计算机网络 计算机安全 政治学 法学
作者
Amala Sonny,Sreenivasa Reddy Yeduri,Linga Reddy Cenkeramaddi
出处
期刊:Applied Soft Computing [Elsevier BV]
卷期号:147: 110773-110773 被引量:35
标识
DOI:10.1016/j.asoc.2023.110773
摘要

Recently, unmanned aerial vehicles (UAVs) have shown promising results for autonomous sensing. UAVs have been deployed for multiple applications that include surveillance, mapping, tracking, and search operations. Finding an efficient path between a source and a goal is a critical issue that has been the focus of recent exploration. Many path-planning algorithms are utilized to find an efficient path for a UAV to navigate from a source to a goal with obstacle avoidance. Despite the extensive literature and numerous research proposals for path planning, dynamic obstacle avoidance has not been addressed with machine learning. When the obstacles are dynamic, i.e., they can change their position over time, and the constraints of the path planning algorithm become more challenging. This in turn adds a layer of complexity to the path planning algorithm. To address this challenge, a Q-learning algorithm is proposed in this work to facilitate efficient path planning for UAVs with both static and dynamic obstacle avoidance. We introduced the Shortest Distance Prioritization policy in the learning process which marginally reduces the distance that the UAV has to travel to reach the goal. Further, the proposed Q-learning algorithm adopts a grid-graph-based method to solve the path-planning problem. It learns to maximize the reward based on the agent's behavior in the environment. Through results, the performance comparison between the proposed approach and state-of-the-art path planning approaches such as A-star, Dijkstra, and Sarsa algorithms are evaluated in terms of learning time and path length. We show through results that the proposed approach results in improved performance when compared to state-of-the-art approaches. Further, the effect of an increased number of obstacles are evaluated on the performance of the proposed approach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
gfdsh完成签到,获得积分10
2秒前
月亮上的猫完成签到,获得积分10
2秒前
Bran完成签到,获得积分10
2秒前
小茹完成签到,获得积分20
3秒前
3秒前
临时演员完成签到,获得积分0
3秒前
如意的剑鬼完成签到,获得积分10
3秒前
袋鼠完成签到,获得积分10
3秒前
3秒前
SciGPT应助快来吃甜瓜采纳,获得10
4秒前
5秒前
韩小寒qqq完成签到,获得积分10
5秒前
启程牛牛完成签到,获得积分0
5秒前
stepha完成签到,获得积分20
6秒前
喵喵完成签到,获得积分10
6秒前
熊熊熊完成签到,获得积分10
7秒前
张二十八完成签到,获得积分10
7秒前
DezhaoWang完成签到,获得积分10
7秒前
ww完成签到,获得积分10
8秒前
8秒前
ThomasZ完成签到,获得积分10
8秒前
明亮绮琴完成签到,获得积分10
8秒前
kk完成签到,获得积分10
9秒前
10秒前
MM216完成签到,获得积分10
10秒前
10秒前
五月天完成签到,获得积分10
10秒前
11秒前
dzdzn完成签到 ,获得积分10
11秒前
蜡笔小可完成签到,获得积分10
11秒前
12秒前
Neil完成签到,获得积分10
12秒前
霁星河完成签到,获得积分10
12秒前
九柒完成签到,获得积分10
12秒前
12秒前
量子星尘发布了新的文献求助10
12秒前
_Charmo发布了新的文献求助10
13秒前
馆长应助斯文的翠阳采纳,获得20
13秒前
温超完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
Psychology for Teachers 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4598108
求助须知:如何正确求助?哪些是违规求助? 4009392
关于积分的说明 12410910
捐赠科研通 3688745
什么是DOI,文献DOI怎么找? 2033396
邀请新用户注册赠送积分活动 1066690
科研通“疑难数据库(出版商)”最低求助积分说明 951763