Q-learning-based unmanned aerial vehicle path planning with dynamic obstacle avoidance

避障 运动规划 计算机科学 障碍物 路径(计算) 任意角度路径规划 Dijkstra算法 最短路径问题 强化学习 人工智能 快速通道 避碰 图形 实时计算 数学优化 移动机器人 机器人 理论计算机科学 数学 碰撞 计算机网络 计算机安全 政治学 法学
作者
Amala Sonny,Sreenivasa Reddy Yeduri,Linga Reddy Cenkeramaddi
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:147: 110773-110773 被引量:35
标识
DOI:10.1016/j.asoc.2023.110773
摘要

Recently, unmanned aerial vehicles (UAVs) have shown promising results for autonomous sensing. UAVs have been deployed for multiple applications that include surveillance, mapping, tracking, and search operations. Finding an efficient path between a source and a goal is a critical issue that has been the focus of recent exploration. Many path-planning algorithms are utilized to find an efficient path for a UAV to navigate from a source to a goal with obstacle avoidance. Despite the extensive literature and numerous research proposals for path planning, dynamic obstacle avoidance has not been addressed with machine learning. When the obstacles are dynamic, i.e., they can change their position over time, and the constraints of the path planning algorithm become more challenging. This in turn adds a layer of complexity to the path planning algorithm. To address this challenge, a Q-learning algorithm is proposed in this work to facilitate efficient path planning for UAVs with both static and dynamic obstacle avoidance. We introduced the Shortest Distance Prioritization policy in the learning process which marginally reduces the distance that the UAV has to travel to reach the goal. Further, the proposed Q-learning algorithm adopts a grid-graph-based method to solve the path-planning problem. It learns to maximize the reward based on the agent's behavior in the environment. Through results, the performance comparison between the proposed approach and state-of-the-art path planning approaches such as A-star, Dijkstra, and Sarsa algorithms are evaluated in terms of learning time and path length. We show through results that the proposed approach results in improved performance when compared to state-of-the-art approaches. Further, the effect of an increased number of obstacles are evaluated on the performance of the proposed approach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
852应助Zongpeng采纳,获得10
刚刚
希望天下0贩的0应助jw采纳,获得10
1秒前
畅快尔槐发布了新的文献求助10
1秒前
1秒前
2秒前
WXECO发布了新的文献求助10
2秒前
阿白先生发布了新的文献求助10
2秒前
勤奋糖豆完成签到,获得积分10
3秒前
李欢发布了新的文献求助10
3秒前
烟花应助agosion采纳,获得10
4秒前
hetao286发布了新的文献求助10
5秒前
6秒前
wangyan完成签到,获得积分10
6秒前
huiseXT应助花凉采纳,获得10
6秒前
6秒前
6秒前
6秒前
6秒前
海虎爆破拳完成签到,获得积分10
7秒前
8秒前
sss完成签到,获得积分10
8秒前
Dr大壮发布了新的文献求助10
9秒前
9秒前
11秒前
11秒前
苗条盼芙发布了新的文献求助10
11秒前
少年完成签到,获得积分10
12秒前
prince完成签到,获得积分10
12秒前
彼其于岸发布了新的文献求助10
13秒前
13秒前
嘟嘟完成签到,获得积分10
13秒前
芳芳发布了新的文献求助10
14秒前
雪晴发布了新的文献求助10
14秒前
mao12wang发布了新的文献求助10
14秒前
科研小白发布了新的文献求助10
14秒前
清脆帽子完成签到,获得积分10
15秒前
赘婿应助阿杰采纳,获得10
15秒前
sss发布了新的文献求助10
16秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5351276
求助须知:如何正确求助?哪些是违规求助? 4484386
关于积分的说明 13958842
捐赠科研通 4383846
什么是DOI,文献DOI怎么找? 2408681
邀请新用户注册赠送积分活动 1401233
关于科研通互助平台的介绍 1374752