Q-learning-based unmanned aerial vehicle path planning with dynamic obstacle avoidance

避障 运动规划 计算机科学 障碍物 路径(计算) 任意角度路径规划 Dijkstra算法 最短路径问题 强化学习 人工智能 快速通道 避碰 图形 实时计算 数学优化 移动机器人 机器人 理论计算机科学 数学 碰撞 计算机网络 计算机安全 政治学 法学
作者
Amala Sonny,Sreenivasa Reddy Yeduri,Linga Reddy Cenkeramaddi
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:147: 110773-110773 被引量:63
标识
DOI:10.1016/j.asoc.2023.110773
摘要

Recently, unmanned aerial vehicles (UAVs) have shown promising results for autonomous sensing. UAVs have been deployed for multiple applications that include surveillance, mapping, tracking, and search operations. Finding an efficient path between a source and a goal is a critical issue that has been the focus of recent exploration. Many path-planning algorithms are utilized to find an efficient path for a UAV to navigate from a source to a goal with obstacle avoidance. Despite the extensive literature and numerous research proposals for path planning, dynamic obstacle avoidance has not been addressed with machine learning. When the obstacles are dynamic, i.e., they can change their position over time, and the constraints of the path planning algorithm become more challenging. This in turn adds a layer of complexity to the path planning algorithm. To address this challenge, a Q-learning algorithm is proposed in this work to facilitate efficient path planning for UAVs with both static and dynamic obstacle avoidance. We introduced the Shortest Distance Prioritization policy in the learning process which marginally reduces the distance that the UAV has to travel to reach the goal. Further, the proposed Q-learning algorithm adopts a grid-graph-based method to solve the path-planning problem. It learns to maximize the reward based on the agent's behavior in the environment. Through results, the performance comparison between the proposed approach and state-of-the-art path planning approaches such as A-star, Dijkstra, and Sarsa algorithms are evaluated in terms of learning time and path length. We show through results that the proposed approach results in improved performance when compared to state-of-the-art approaches. Further, the effect of an increased number of obstacles are evaluated on the performance of the proposed approach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
Sue完成签到 ,获得积分10
4秒前
sunc发布了新的文献求助10
7秒前
科研小菜完成签到 ,获得积分10
7秒前
SPark发布了新的文献求助10
8秒前
9秒前
嘿嘿应助陈研生采纳,获得10
9秒前
Lasse发布了新的文献求助10
10秒前
眯眯眼的宛白完成签到,获得积分20
12秒前
14秒前
我崽了你发布了新的文献求助30
15秒前
16秒前
fanf完成签到,获得积分10
17秒前
完美世界应助mayun95采纳,获得10
18秒前
量子星尘发布了新的文献求助10
19秒前
ashin17发布了新的文献求助10
21秒前
21秒前
科研通AI2S应助cxw采纳,获得10
23秒前
23秒前
呼噜呼噜毛完成签到 ,获得积分10
25秒前
25秒前
烟花应助QinQin采纳,获得10
25秒前
JamesPei应助猪猪hero采纳,获得10
26秒前
26秒前
27秒前
黄颖完成签到,获得积分10
27秒前
29秒前
30秒前
CodeCraft应助Nora采纳,获得10
31秒前
灵巧帽子发布了新的文献求助20
32秒前
小吴同学发布了新的文献求助10
34秒前
黄芪2号完成签到,获得积分10
34秒前
34秒前
34秒前
Jes完成签到,获得积分10
35秒前
凶狠的棒棒糖关注了科研通微信公众号
35秒前
谦让雨柏完成签到 ,获得积分10
35秒前
35秒前
36秒前
36秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637910
求助须知:如何正确求助?哪些是违规求助? 4744414
关于积分的说明 15000761
捐赠科研通 4796111
什么是DOI,文献DOI怎么找? 2562349
邀请新用户注册赠送积分活动 1521868
关于科研通互助平台的介绍 1481716