Q-learning-based unmanned aerial vehicle path planning with dynamic obstacle avoidance

避障 运动规划 计算机科学 障碍物 路径(计算) 任意角度路径规划 Dijkstra算法 最短路径问题 强化学习 人工智能 快速通道 避碰 图形 实时计算 数学优化 移动机器人 机器人 理论计算机科学 数学 碰撞 计算机网络 计算机安全 政治学 法学
作者
Amala Sonny,Sreenivasa Reddy Yeduri,Linga Reddy Cenkeramaddi
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:147: 110773-110773 被引量:63
标识
DOI:10.1016/j.asoc.2023.110773
摘要

Recently, unmanned aerial vehicles (UAVs) have shown promising results for autonomous sensing. UAVs have been deployed for multiple applications that include surveillance, mapping, tracking, and search operations. Finding an efficient path between a source and a goal is a critical issue that has been the focus of recent exploration. Many path-planning algorithms are utilized to find an efficient path for a UAV to navigate from a source to a goal with obstacle avoidance. Despite the extensive literature and numerous research proposals for path planning, dynamic obstacle avoidance has not been addressed with machine learning. When the obstacles are dynamic, i.e., they can change their position over time, and the constraints of the path planning algorithm become more challenging. This in turn adds a layer of complexity to the path planning algorithm. To address this challenge, a Q-learning algorithm is proposed in this work to facilitate efficient path planning for UAVs with both static and dynamic obstacle avoidance. We introduced the Shortest Distance Prioritization policy in the learning process which marginally reduces the distance that the UAV has to travel to reach the goal. Further, the proposed Q-learning algorithm adopts a grid-graph-based method to solve the path-planning problem. It learns to maximize the reward based on the agent's behavior in the environment. Through results, the performance comparison between the proposed approach and state-of-the-art path planning approaches such as A-star, Dijkstra, and Sarsa algorithms are evaluated in terms of learning time and path length. We show through results that the proposed approach results in improved performance when compared to state-of-the-art approaches. Further, the effect of an increased number of obstacles are evaluated on the performance of the proposed approach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hello应助嘿嘿采纳,获得10
刚刚
可可可可汁完成签到 ,获得积分10
3秒前
无奈的尔容完成签到,获得积分10
5秒前
Xiaohu完成签到,获得积分10
6秒前
XIEQ发布了新的文献求助10
7秒前
7秒前
科研通AI6应助yyanxuemin919采纳,获得10
9秒前
9秒前
11秒前
13秒前
一头猪发布了新的文献求助10
14秒前
Bazinga完成签到,获得积分10
14秒前
嗯嗯嗯完成签到,获得积分10
15秒前
懒鲸鱼给懒鲸鱼的求助进行了留言
15秒前
16秒前
嘿嘿发布了新的文献求助10
16秒前
able完成签到 ,获得积分10
17秒前
18秒前
嗯嗯嗯发布了新的文献求助10
19秒前
丘比特应助度ewf采纳,获得10
20秒前
丽丽丽发布了新的文献求助10
20秒前
yyanxuemin919发布了新的文献求助10
20秒前
蘑菇完成签到 ,获得积分10
23秒前
jam发布了新的文献求助10
23秒前
24秒前
烟花应助ccc采纳,获得10
25秒前
拉长的诗蕊完成签到,获得积分10
25秒前
26秒前
大妙妙完成签到 ,获得积分10
29秒前
29秒前
里里完成签到 ,获得积分10
30秒前
韩妙发布了新的文献求助10
31秒前
科研通AI6应助丽丽丽采纳,获得10
32秒前
太渊完成签到 ,获得积分10
32秒前
ccc发布了新的文献求助10
34秒前
爆米花应助chen采纳,获得10
37秒前
赘婿应助fahbfafajk采纳,获得10
39秒前
39秒前
李健应助韩妙采纳,获得10
40秒前
41秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
Essential Guides for Early Career Teachers: Mental Well-being and Self-care 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5563579
求助须知:如何正确求助?哪些是违规求助? 4648467
关于积分的说明 14685031
捐赠科研通 4590445
什么是DOI,文献DOI怎么找? 2518519
邀请新用户注册赠送积分活动 1491143
关于科研通互助平台的介绍 1462432