HEProto: A Hierarchical Enhancing ProtoNet based on Multi-Task Learning for Few-shot Named Entity Recognition

计算机科学 杠杆(统计) 人工智能 边距(机器学习) 任务(项目管理) 特征学习 构造(python库) 相似性(几何) 自然语言处理 机器学习 情报检索 图像(数学) 管理 经济 程序设计语言
作者
Wei Chen,L. Zhao,Pengfei Luo,Tong Xu,Yi Zheng,Enhong Chen
标识
DOI:10.1145/3583780.3614908
摘要

Few-shot Named Entity Recognition (NER) task, which aims to identify and classify entities from different domains with limited training samples, has long been treated as a basic step for knowledge graph (KG) construction. Great efforts have been made on this task with competitive performance, however, they usually treat the two subtasks, namely span detection and type classification, as mutually independent, and the integrity and correlation between subtasks have been largely ignored. Moreover, prior arts may fail to absorb the coarse-grained features of entities, resulting in a semantic-insufficient representation of entity types. To that end, in this paper, we propose a Hierarchical Enhancing ProtoNet (HEProto) based on multi-task learning, which is utilized to jointly learn these two subtasks and model their correlation. Specifically, we adopt contrastive learning to enhance the span boundary information and the type semantic representations in these two subtasks. Then, the hierarchical prototypical network is designed to leverage the coarse-grained information of entities in the type classification stage, which could help the model to better learn the fine-grained semantic representations. Along this line, we construct a similarity margin loss to reduce the similarity between fine-grained entities and other irrelevant coarse-grained prototypes. Finally, extensive experiments on the Few-NERD dataset prove that our solution outperforms competitive baseline methods. The source code of HEProto is available at \hrefhttps://github.com/fanshu6hao/HEProto https://github.com/fanshu6hao/HEProto.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
啊锐完成签到,获得积分10
刚刚
1秒前
吃三口茄子完成签到,获得积分10
1秒前
英俊的铭应助wdy采纳,获得10
1秒前
英姑应助学术卷心菜采纳,获得10
1秒前
迟迟池完成签到 ,获得积分10
2秒前
HMZ完成签到,获得积分10
2秒前
欢呼高山发布了新的文献求助10
2秒前
所所应助cimu95采纳,获得10
2秒前
秋qiu发布了新的文献求助10
3秒前
iNk应助尧九采纳,获得20
3秒前
marson完成签到,获得积分10
3秒前
4秒前
灰光呀发布了新的文献求助20
4秒前
4秒前
甜甜的半仙完成签到,获得积分10
4秒前
成就的白竹完成签到,获得积分10
4秒前
小豆豆完成签到,获得积分10
5秒前
嘟嘟金子发布了新的文献求助30
6秒前
Omni发布了新的文献求助10
6秒前
WJ完成签到,获得积分20
6秒前
7秒前
酷酷的笔记本完成签到,获得积分10
8秒前
lalala发布了新的文献求助10
8秒前
脑洞疼应助s1kl采纳,获得10
8秒前
逍遥自在完成签到,获得积分10
9秒前
Tina发布了新的文献求助10
9秒前
维尼发布了新的文献求助10
10秒前
tusyuki发布了新的文献求助10
10秒前
Arthur Zhu完成签到,获得积分10
11秒前
a'mao'men完成签到,获得积分10
12秒前
顺利的小伙完成签到 ,获得积分10
13秒前
大意的小松鼠完成签到,获得积分10
13秒前
孤山季礼完成签到,获得积分10
13秒前
爆米花应助魁梧的曼凡采纳,获得10
14秒前
在水一方应助Max采纳,获得10
14秒前
14秒前
14秒前
赘婿应助流苏33采纳,获得30
14秒前
Paul完成签到,获得积分10
15秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 600
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3234917
求助须知:如何正确求助?哪些是违规求助? 2881181
关于积分的说明 8218944
捐赠科研通 2548871
什么是DOI,文献DOI怎么找? 1377968
科研通“疑难数据库(出版商)”最低求助积分说明 648095
邀请新用户注册赠送积分活动 623563