Dynamics of growing carbon nanotube interfaces probed by machine learning-enabled molecular simulations

成核 碳纳米管 材料科学 纳米技术 分子动力学 化学物理 纳米 催化作用 纳米管 复合材料 化学 计算化学 热力学 物理 生物化学
作者
Daniel Hedman,Ben McLean,C. Bichara,Shigeo Maruyama,J. Andreas Larsson,Feng Ding
出处
期刊:Research Square - Research Square 被引量:3
标识
DOI:10.21203/rs.3.rs-3197610/v1
摘要

Abstract Carbon nanotubes (CNTs), hollow cylinders of carbon 1 with diameters in the nanometer range, hold great promise for advanced technologies 2–5 , provided their structure is controlled and remains uniform throughout their length 6–9 . Their growth, facilitated by a metal catalyst, takes place at high temperatures across a tube-catalyst interface comprising a few tens of carbon atoms. During growth, the structure, and properties of CNTs are defined but defects can alter them 10 . These defects are believed to form and heal at the tube-catalyst interface although an understanding of these mechanisms at the atomic-level is still lacking 11, 12 . Here, using molecular dynamics simulations driven by a machine learning force field 13 (MLFF) we developed, DeepCNT-22, we unveil the mechanisms of CNT formation from nucleation to growth including defect formation and healing. We find the tube-catalyst interface to be highly dynamic during growth, with large fluctuations in the chiral structure of the CNT-edge. This contradicts the previous notion of a continuous spiral growth mode 14 , but confirms that the growing tube edge exhibits significant configurational entropy 15 . We demonstrate that defects form stochastically at the tube-catalyst interface, however, under low growth rates and high temperatures, healing becomes more efficient than formation, allowing CNTs to grow defect-free to seemingly unlimited lengths. These insights, not readily available via experiments, demonstrate the remarkable power of MLFF-driven simulations and fill long-standing gaps in our understanding of CNT growth mechanisms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LHQ完成签到,获得积分10
刚刚
1秒前
1秒前
1秒前
SciGPT应助LL来了采纳,获得10
1秒前
个性的振家完成签到,获得积分10
2秒前
3秒前
星宇完成签到 ,获得积分10
4秒前
花有花期发布了新的文献求助10
4秒前
Snowy完成签到,获得积分10
5秒前
光亮的树叶完成签到,获得积分10
5秒前
孙瞳完成签到,获得积分10
6秒前
7秒前
LHQ发布了新的文献求助10
7秒前
深情雅柔完成签到,获得积分10
7秒前
7秒前
Lucas应助慧慧采纳,获得30
7秒前
8秒前
小蘑菇应助小白小白鼠采纳,获得10
8秒前
9秒前
gzsy完成签到,获得积分10
9秒前
蔡夜安完成签到 ,获得积分10
10秒前
10秒前
13秒前
科研通AI2S应助英勇的鼠标采纳,获得10
13秒前
Demon完成签到,获得积分10
13秒前
慧慧给慧慧的求助进行了留言
13秒前
Lengbo发布了新的文献求助10
14秒前
14秒前
赘婿应助南溪采纳,获得10
14秒前
田様应助宝宝采纳,获得10
15秒前
16秒前
16秒前
Hello应助JasonSun采纳,获得10
17秒前
莎莎完成签到 ,获得积分10
18秒前
LL来了发布了新的文献求助10
18秒前
木南楠a完成签到,获得积分10
18秒前
包包大人完成签到 ,获得积分10
19秒前
林声发布了新的文献求助20
19秒前
20秒前
高分求助中
좌파는 어떻게 좌파가 됐나:한국 급진노동운동의 형성과 궤적 2500
Sustainability in Tides Chemistry 1500
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
CLSI EP47 Evaluation of Reagent Carryover Effects on Test Results, 1st Edition 800
Cognitive linguistics critical concepts in linguistics 800
Threaded Harmony: A Sustainable Approach to Fashion 799
Livre et militantisme : La Cité éditeur 1958-1967 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3053572
求助须知:如何正确求助?哪些是违规求助? 2710765
关于积分的说明 7423161
捐赠科研通 2355230
什么是DOI,文献DOI怎么找? 1246916
科研通“疑难数据库(出版商)”最低求助积分说明 606188
版权声明 595975