PrivacyEAFL: Privacy-Enhanced Aggregation for Federated Learning in Mobile Crowdsensing

计算机科学 拥挤感测 同态加密 加密 移动设备 移动计算 架空(工程) 密码学 协议(科学) 机器学习 计算机安全 人工智能 计算机网络 万维网 操作系统 病理 医学 替代医学
作者
Mingwu Zhang,Shijin Chen,Jian Shen,Willy Susilo
出处
期刊:IEEE Transactions on Information Forensics and Security [Institute of Electrical and Electronics Engineers]
卷期号:18: 5804-5816 被引量:9
标识
DOI:10.1109/tifs.2023.3315526
摘要

Mobile crowdsensing (MCS) combined with federated learning, as an emerging data collection and intelligent process paradigm, has received lots of attention in social networks and mobile Internet-of-Things, etc. However, as the openness and transparent of mobile crowdsensing tasks, federated learning model and training samples for crowdsensing data still face enormous privacy revealing risks, and it will reduce the willingness of people or nodes to actively participate and provide data in MCS. In this paper, we present a Privacy-Enhanced Aggregation for Federated Learning in MCS, namely PrivacyEAFL, to implement the training of federated learning under mobile crowdsensing system in terms of privacy protection of all participants. Firstly, considering that the crowdsensing server might share information with some participants to obtain and leak some local models, we design a collusion-resistant data aggregation approach by combining homomorphic cryptosystem and hashed Diffie-Hellman key exchange protocol. Secondly, we design a data encoding and aggregating method with data packing which can reduce the computation cost and communication overhead for the system. Thirdly, as the number of participants' samples are dynamically changeable in MCS, we design a sample number protection method that can implement the security and privacy of the number of training samples owned by participants. Finally, we provide the experimental results on real-world datasets (i.e, MNIST and Car Evaluation) with crowdsensing devices under Raspberry-Pi 4B and Redmi-K30 Pro , respectively, and the results demonstrate that our scheme is more efficient and practical in secure and privacy-enhanced model aggregation for federated learning in mobile crowdsensing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
哈哈哈完成签到,获得积分10
刚刚
米饭辣椒发布了新的文献求助10
1秒前
e任思发布了新的文献求助10
1秒前
2秒前
共享精神应助淡淡凌珍采纳,获得10
2秒前
玛斯特尔完成签到,获得积分10
3秒前
liang发布了新的文献求助10
4秒前
gyn0762完成签到,获得积分10
6秒前
Orange应助正无穷采纳,获得10
6秒前
7秒前
菲菲完成签到 ,获得积分10
7秒前
大知闲闲完成签到 ,获得积分10
7秒前
8秒前
烂漫的苑睐完成签到,获得积分20
8秒前
8秒前
8秒前
hywel完成签到,获得积分10
10秒前
10秒前
10秒前
周杰发布了新的文献求助10
11秒前
Criminology34应助某某采纳,获得80
12秒前
13秒前
13秒前
13秒前
Young4399完成签到 ,获得积分10
14秒前
15秒前
风与月发布了新的文献求助10
15秒前
米饭辣椒完成签到,获得积分10
15秒前
16秒前
16秒前
liang完成签到,获得积分10
17秒前
17秒前
秋天的雪完成签到,获得积分10
18秒前
乐乐应助Aoooo采纳,获得10
19秒前
xie发布了新的文献求助10
19秒前
小李发布了新的文献求助10
20秒前
百里冰香发布了新的文献求助10
20秒前
82418519完成签到 ,获得积分10
22秒前
22秒前
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
A Modern Guide to the Economics of Crime 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5271837
求助须知:如何正确求助?哪些是违规求助? 4429337
关于积分的说明 13788325
捐赠科研通 4307703
什么是DOI,文献DOI怎么找? 2363706
邀请新用户注册赠送积分活动 1359371
关于科研通互助平台的介绍 1322355