PrivacyEAFL: Privacy-Enhanced Aggregation for Federated Learning in Mobile Crowdsensing

计算机科学 拥挤感测 同态加密 加密 移动设备 移动计算 架空(工程) 密码学 协议(科学) 机器学习 计算机安全 人工智能 计算机网络 万维网 操作系统 病理 医学 替代医学
作者
Mingwu Zhang,Shijin Chen,Jian Shen,Willy Susilo
出处
期刊:IEEE Transactions on Information Forensics and Security [Institute of Electrical and Electronics Engineers]
卷期号:18: 5804-5816 被引量:31
标识
DOI:10.1109/tifs.2023.3315526
摘要

Mobile crowdsensing (MCS) combined with federated learning, as an emerging data collection and intelligent process paradigm, has received lots of attention in social networks and mobile Internet-of-Things, etc. However, as the openness and transparent of mobile crowdsensing tasks, federated learning model and training samples for crowdsensing data still face enormous privacy revealing risks, and it will reduce the willingness of people or nodes to actively participate and provide data in MCS. In this paper, we present a Privacy-Enhanced Aggregation for Federated Learning in MCS, namely PrivacyEAFL, to implement the training of federated learning under mobile crowdsensing system in terms of privacy protection of all participants. Firstly, considering that the crowdsensing server might share information with some participants to obtain and leak some local models, we design a collusion-resistant data aggregation approach by combining homomorphic cryptosystem and hashed Diffie-Hellman key exchange protocol. Secondly, we design a data encoding and aggregating method with data packing which can reduce the computation cost and communication overhead for the system. Thirdly, as the number of participants’ samples are dynamically changeable in MCS, we design a sample number protection method that can implement the security and privacy of the number of training samples owned by participants. Finally, we provide the experimental results on real-world datasets (i.e, MNIST and Car Evaluation) with crowdsensing devices under Raspberry-Pi 4B and Redmi-K30 Pro, respectively, and the results demonstrate that our scheme is more efficient and practical in secure and privacy-enhanced model aggregation for federated learning in mobile crowdsensing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
美丽的问安完成签到 ,获得积分10
1秒前
王吉萍完成签到 ,获得积分10
1秒前
8秒前
AmyHu完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助10
10秒前
量子星尘发布了新的文献求助30
14秒前
傻傻的哈密瓜完成签到,获得积分10
19秒前
qiancib202完成签到,获得积分0
26秒前
12完成签到 ,获得积分10
28秒前
健壮的花瓣完成签到 ,获得积分10
35秒前
量子星尘发布了新的文献求助10
37秒前
平淡寒烟完成签到 ,获得积分10
40秒前
45秒前
Frank完成签到,获得积分10
52秒前
Chase完成签到,获得积分10
52秒前
量子星尘发布了新的文献求助10
52秒前
星辰大海应助细心的语蓉采纳,获得10
57秒前
Singhi完成签到 ,获得积分10
57秒前
月儿完成签到 ,获得积分10
59秒前
Rolling完成签到,获得积分10
1分钟前
1分钟前
罗先斗完成签到,获得积分10
1分钟前
1分钟前
科研通AI2S应助九月采纳,获得10
1分钟前
corleeang完成签到 ,获得积分10
1分钟前
1分钟前
Akim应助YufeiLiu采纳,获得10
1分钟前
量子星尘发布了新的文献求助50
1分钟前
量子星尘发布了新的文献求助10
1分钟前
wave8013完成签到 ,获得积分10
1分钟前
凌泉完成签到 ,获得积分10
1分钟前
cq_2完成签到,获得积分0
1分钟前
飞飞发布了新的文献求助10
1分钟前
1分钟前
1分钟前
BowieHuang应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
Tip-in balloon grenadoplasty for uncrossable chronic total occlusions 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5789302
求助须知:如何正确求助?哪些是违规求助? 5718164
关于积分的说明 15474454
捐赠科研通 4917190
什么是DOI,文献DOI怎么找? 2646815
邀请新用户注册赠送积分活动 1594475
关于科研通互助平台的介绍 1548962