亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

PrivacyEAFL: Privacy-Enhanced Aggregation for Federated Learning in Mobile Crowdsensing

计算机科学 拥挤感测 同态加密 加密 移动设备 移动计算 架空(工程) 密码学 协议(科学) 机器学习 计算机安全 人工智能 计算机网络 万维网 操作系统 病理 医学 替代医学
作者
Mingwu Zhang,Shijin Chen,Jian Shen,Willy Susilo
出处
期刊:IEEE Transactions on Information Forensics and Security [Institute of Electrical and Electronics Engineers]
卷期号:18: 5804-5816 被引量:31
标识
DOI:10.1109/tifs.2023.3315526
摘要

Mobile crowdsensing (MCS) combined with federated learning, as an emerging data collection and intelligent process paradigm, has received lots of attention in social networks and mobile Internet-of-Things, etc. However, as the openness and transparent of mobile crowdsensing tasks, federated learning model and training samples for crowdsensing data still face enormous privacy revealing risks, and it will reduce the willingness of people or nodes to actively participate and provide data in MCS. In this paper, we present a Privacy-Enhanced Aggregation for Federated Learning in MCS, namely PrivacyEAFL, to implement the training of federated learning under mobile crowdsensing system in terms of privacy protection of all participants. Firstly, considering that the crowdsensing server might share information with some participants to obtain and leak some local models, we design a collusion-resistant data aggregation approach by combining homomorphic cryptosystem and hashed Diffie-Hellman key exchange protocol. Secondly, we design a data encoding and aggregating method with data packing which can reduce the computation cost and communication overhead for the system. Thirdly, as the number of participants’ samples are dynamically changeable in MCS, we design a sample number protection method that can implement the security and privacy of the number of training samples owned by participants. Finally, we provide the experimental results on real-world datasets (i.e, MNIST and Car Evaluation) with crowdsensing devices under Raspberry-Pi 4B and Redmi-K30 Pro, respectively, and the results demonstrate that our scheme is more efficient and practical in secure and privacy-enhanced model aggregation for federated learning in mobile crowdsensing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ceeray23应助科研通管家采纳,获得10
1秒前
ceeray23应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
ceeray23应助科研通管家采纳,获得10
1秒前
6秒前
Yuanyuan发布了新的文献求助10
9秒前
yexu发布了新的文献求助10
16秒前
沈惠映完成签到 ,获得积分10
17秒前
大胆的伟宸完成签到,获得积分10
33秒前
34秒前
yexu完成签到,获得积分10
38秒前
星辰大海应助大胆的伟宸采纳,获得10
46秒前
qinghongmeng完成签到 ,获得积分20
49秒前
1分钟前
1分钟前
1分钟前
1分钟前
虚心依白发布了新的文献求助10
1分钟前
平淡的翅膀完成签到,获得积分10
1分钟前
1分钟前
1分钟前
521完成签到,获得积分20
1分钟前
麻辣香锅发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
我是老大应助科研通管家采纳,获得10
2分钟前
liutao应助科研通管家采纳,获得10
2分钟前
香蕉觅云应助科研通管家采纳,获得10
2分钟前
Ava应助科研通管家采纳,获得10
2分钟前
2分钟前
mellow完成签到,获得积分10
2分钟前
xuexin发布了新的文献求助60
2分钟前
旧城以西完成签到,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
xuexin发布了新的文献求助30
2分钟前
麻辣香锅发布了新的文献求助10
2分钟前
大胆的伟宸关注了科研通微信公众号
2分钟前
xuexin完成签到,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5650884
求助须知:如何正确求助?哪些是违规求助? 4781901
关于积分的说明 15052691
捐赠科研通 4809656
什么是DOI,文献DOI怎么找? 2572449
邀请新用户注册赠送积分活动 1528505
关于科研通互助平台的介绍 1487448