PrivacyEAFL: Privacy-Enhanced Aggregation for Federated Learning in Mobile Crowdsensing

计算机科学 拥挤感测 同态加密 加密 移动设备 移动计算 架空(工程) 密码学 协议(科学) 机器学习 计算机安全 人工智能 计算机网络 万维网 操作系统 病理 医学 替代医学
作者
Mingwu Zhang,Shijin Chen,Jian Shen,Willy Susilo
出处
期刊:IEEE Transactions on Information Forensics and Security [Institute of Electrical and Electronics Engineers]
卷期号:18: 5804-5816 被引量:31
标识
DOI:10.1109/tifs.2023.3315526
摘要

Mobile crowdsensing (MCS) combined with federated learning, as an emerging data collection and intelligent process paradigm, has received lots of attention in social networks and mobile Internet-of-Things, etc. However, as the openness and transparent of mobile crowdsensing tasks, federated learning model and training samples for crowdsensing data still face enormous privacy revealing risks, and it will reduce the willingness of people or nodes to actively participate and provide data in MCS. In this paper, we present a Privacy-Enhanced Aggregation for Federated Learning in MCS, namely PrivacyEAFL, to implement the training of federated learning under mobile crowdsensing system in terms of privacy protection of all participants. Firstly, considering that the crowdsensing server might share information with some participants to obtain and leak some local models, we design a collusion-resistant data aggregation approach by combining homomorphic cryptosystem and hashed Diffie-Hellman key exchange protocol. Secondly, we design a data encoding and aggregating method with data packing which can reduce the computation cost and communication overhead for the system. Thirdly, as the number of participants’ samples are dynamically changeable in MCS, we design a sample number protection method that can implement the security and privacy of the number of training samples owned by participants. Finally, we provide the experimental results on real-world datasets (i.e, MNIST and Car Evaluation) with crowdsensing devices under Raspberry-Pi 4B and Redmi-K30 Pro, respectively, and the results demonstrate that our scheme is more efficient and practical in secure and privacy-enhanced model aggregation for federated learning in mobile crowdsensing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
斯文败类应助欣慰雪巧采纳,获得10
2秒前
梅菜菜完成签到,获得积分10
2秒前
4秒前
Hello应助zyx采纳,获得10
5秒前
5秒前
学术小白完成签到,获得积分10
5秒前
5秒前
梅菜菜发布了新的文献求助10
5秒前
舒克发布了新的文献求助10
6秒前
Rgly完成签到 ,获得积分10
6秒前
负责中恶完成签到,获得积分10
7秒前
chihiro完成签到,获得积分20
7秒前
墨琼琼应助科研通管家采纳,获得10
7秒前
墨琼琼应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
Owen应助科研通管家采纳,获得10
8秒前
Owen应助科研通管家采纳,获得10
8秒前
李爱国应助科研通管家采纳,获得10
8秒前
李爱国应助科研通管家采纳,获得10
8秒前
田様应助科研通管家采纳,获得10
8秒前
8秒前
田様应助科研通管家采纳,获得10
8秒前
8秒前
搜集达人应助科研通管家采纳,获得10
8秒前
hsr_eye完成签到,获得积分10
8秒前
8秒前
After应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
搜集达人应助科研通管家采纳,获得10
8秒前
小马甲应助科研通管家采纳,获得100
8秒前
After应助科研通管家采纳,获得10
8秒前
8秒前
小马甲应助科研通管家采纳,获得100
8秒前
赘婿应助科研通管家采纳,获得10
8秒前
斯文败类应助科研通管家采纳,获得10
8秒前
斯文败类应助科研通管家采纳,获得10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
从k到英国情人 1700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5776553
求助须知:如何正确求助?哪些是违规求助? 5629807
关于积分的说明 15443193
捐赠科研通 4908648
什么是DOI,文献DOI怎么找? 2641367
邀请新用户注册赠送积分活动 1589320
关于科研通互助平台的介绍 1543933