Application of machine learning and its effects on the development of a nursing guidance mobile app for sarcopenia

肌萎缩 医学 护理部 老年学 内科学
作者
Pei‐Hung Liao,Yujie Huang,Chen-Shie Ho,William Chu
出处
期刊:BMC Nursing [Springer Nature]
卷期号:22 (1)
标识
DOI:10.1186/s12912-023-01545-w
摘要

Abstract Background Aging leads to changes in the body system, such as sarcopenia. This can result in several health issues, particularly physical and mobility dysfunction. Asian people typically have little awareness of sarcopenia. Thus, this study incorporated nursing instruction into the mobile application design to allow users to easily learn about sarcopenia. Objective This study evaluated a model for predicting high-risk populations for sarcopenia in home settings. We further developed a sarcopenia nursing guidance mobile application and assessed the effectiveness of this application in influencing sarcopenia-related knowledge and self-care awareness among participants. Methods Using a one-group pretest–posttest design, data were collected from 120 participants at a teaching hospital in northern Taiwan. This study used an artificial intelligence algorithm to evaluate a model for predicting high-risk populations for sarcopenia. We developed and assessed the sarcopenia nursing guidance mobile application using a questionnaire based on the Mobile Application Rating Scale. Results The application developed in this study enhanced participants’ sarcopenia-related knowledge and awareness regarding self-care. After the three-month intervention, the knowledge and awareness was effectively increase, total score was from 4.15 ± 2.35 to 6.65 ± 0.85 and were significant for all questionnaire items (p values < 0.05). On average, 96.1% of the participants were satisfied with the mobile app. The artificial intelligence algorithm positively evaluated the home-use model for predicting high-risk sarcopenia groups. Conclusions The mobile application of the sarcopenia nursing guidance for public use in home settings may help alleviate sarcopenia symptoms and reduce complications by enhancing individuals’ self-care awareness and ability. Trial registration NCT05363033, registered on 02/05/2022.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhang完成签到,获得积分10
刚刚
刚刚
Yeah_椰椰完成签到,获得积分10
1秒前
1秒前
南风知我意关注了科研通微信公众号
1秒前
2秒前
科研通AI2S应助jbear采纳,获得10
2秒前
3秒前
小吕完成签到 ,获得积分10
3秒前
3秒前
3秒前
zhang发布了新的文献求助10
5秒前
收拾完完成签到 ,获得积分10
6秒前
QQQQ发布了新的文献求助50
6秒前
源源源完成签到 ,获得积分10
7秒前
王慧康完成签到,获得积分20
7秒前
一二发布了新的文献求助10
7秒前
茶博士完成签到,获得积分10
7秒前
8秒前
雪白砖家发布了新的文献求助10
8秒前
cz发布了新的文献求助10
8秒前
落枼完成签到,获得积分10
8秒前
希勤发布了新的文献求助10
9秒前
今后应助科研通管家采纳,获得10
11秒前
思源应助科研通管家采纳,获得10
11秒前
华仔应助科研通管家采纳,获得10
11秒前
所所应助科研通管家采纳,获得10
11秒前
FashionBoy应助科研通管家采纳,获得10
11秒前
orixero应助科研通管家采纳,获得10
11秒前
思源应助科研通管家采纳,获得10
11秒前
大个应助科研通管家采纳,获得10
11秒前
慕青应助科研通管家采纳,获得10
11秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
11秒前
12秒前
跳跃的白云完成签到 ,获得积分10
13秒前
活泼飞鸟发布了新的文献求助30
14秒前
CipherSage应助玉米采纳,获得10
15秒前
牛牛的我完成签到 ,获得积分10
16秒前
香蕉觅云应助一二采纳,获得10
17秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134943
求助须知:如何正确求助?哪些是违规求助? 2785901
关于积分的说明 7774393
捐赠科研通 2441736
什么是DOI,文献DOI怎么找? 1298162
科研通“疑难数据库(出版商)”最低求助积分说明 625079
版权声明 600825