DyGraphformer: Transformer combining dynamic spatio-temporal graph network for multivariate time series forecasting

多元统计 计算机科学 时间序列 系列(地层学) 人工智能 图形 变压器 机器学习 模式识别(心理学) 数据挖掘 理论计算机科学 工程类 电压 生物 古生物学 电气工程
作者
Shuo Han,Yaling Xun,Jianghui Cai,Haifeng Yang,Yan‐Feng Li
出处
期刊:Neural Networks [Elsevier BV]
卷期号:181: 106776-106776 被引量:1
标识
DOI:10.1016/j.neunet.2024.106776
摘要

Transformer-based models demonstrate tremendous potential for Multivariate Time Series (MTS) forecasting due to their ability to capture long-term temporal dependencies by using the self-attention mechanism. However, effectively modeling the spatial correlation cross series for MTS is a challenge for Transformer. Although Graph Neural Networks (GNN) are competent for modeling spatial dependencies across series, existing methods are based on the assumption of static relationships between variables, which do not align with the time-varying spatial dependencies in real-world series. Therefore, we propose DyGraphformer, which integrates graph convolution into Transformer to assist Transformer in effectively modeling spatial dependencies, while also dynamically inferring time-varying spatial dependencies by combining historical spatial information. In DyGraphformer, decoder module involving complex recursion is abandoned to accelerate model execution. First, the input is embedded using DSW (Dimension Segment Wise) through integrating its position and node level embedding to preserve temporal and spatial information. Then, the time self-attention layer and dynamic graph convolutional layer are constructed to capture temporal dependencies and spatial dependencies of multivariate time series, respectively. The dynamic graph convolutional layer utilizes Gated Recurrent Unit (GRU) to obtain historical spatial dependencies, and integrates the series features of the current time to perform graph structure inference in multiple subspaces. Specifically, to fully utilize the spatio-temporal information at different scales, DyGraphformer performs hierarchical encoder learning for the final forecasting. Extensive experimental results on seven real-world datasets demonstrate DyGraphformer outperforms state-of-the-art baseline methods, with comparisons including Transformer-based and GNN-based methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Cccsy完成签到,获得积分10
1秒前
星辰发布了新的文献求助30
2秒前
负责凛完成签到,获得积分10
2秒前
冰西瓜完成签到 ,获得积分10
3秒前
huk发布了新的文献求助10
4秒前
4秒前
大个应助Mudiay采纳,获得10
5秒前
6秒前
6秒前
SciGPT应助闪闪的屁股采纳,获得10
7秒前
yaoyh_gc发布了新的文献求助10
8秒前
8秒前
8秒前
搜集达人应助吉吉采纳,获得10
10秒前
CipherSage应助Silole采纳,获得10
10秒前
称心寒松发布了新的文献求助10
11秒前
ding应助佳凝采纳,获得10
11秒前
12秒前
善学以致用应助优秀凌青采纳,获得10
12秒前
13秒前
神秘玩家发布了新的文献求助10
14秒前
科研通AI5应助星辰采纳,获得10
14秒前
17秒前
18秒前
18秒前
皮肤专硕小白一枚完成签到,获得积分10
20秒前
20秒前
20秒前
21秒前
22秒前
烟花应助Caden采纳,获得10
22秒前
Serein完成签到,获得积分10
22秒前
oooo发布了新的文献求助10
23秒前
24秒前
Sam十九完成签到 ,获得积分10
24秒前
24秒前
共享精神应助清脆的书桃采纳,获得10
24秒前
Silole发布了新的文献求助10
24秒前
旸里完成签到,获得积分10
25秒前
李李留下了新的社区评论
26秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3740976
求助须知:如何正确求助?哪些是违规求助? 3283817
关于积分的说明 10036983
捐赠科研通 3000610
什么是DOI,文献DOI怎么找? 1646618
邀请新用户注册赠送积分活动 783804
科研通“疑难数据库(出版商)”最低求助积分说明 750427