Pt-based nanoparticles (NPs) have been widely used in catalysis. However, this suffers from aggregation and/or sintering at working conditions. We demonstrate a robust strategy for stabilizing PtCo NPs under high temperature with strong interaction between M–N–C and PtCo NPs with Pt–M–N coordination, namely, “atom glue.” Such atom glue for stabilizing Pt-based NPs can be extended to Zn, Mn, Fe, Ni, Co, and Cu, being a versatile strategy for stabilizing PtCo NPs, which substantially promotes the performance toward oxygen reduction reaction (ORR) and fuel cell. Impressively, the mass activity (MA) reaches 2.99 A mg Pt −1 for ORR over g -Zn–N–C/PtCo, and 79.3% of the initial MA is maintained after 90K cycles in fuel cell. This work provides a versatile strategy for stabilizing Pt-based NPs via atom glue, which is likely to spark widespread interest across various fields.