Corporate Financial Risk Identification and Operation Control Analysis for XGBoost Modeling

鉴定(生物学) 业务 控制(管理) 财务风险 财务 风险分析(工程) 计算机科学 人工智能 植物 生物
作者
Yu Guan,Zhijuan Zong
出处
期刊:Applied mathematics and nonlinear sciences [De Gruyter]
卷期号:9 (1)
标识
DOI:10.2478/amns-2024-2247
摘要

Abstract Risks in the financial market are omnipresent, and the operations of listed companies are affected by various factors, so the study of the financial risks of listed companies is also of great significance. In this paper, the statement data of listed companies and the text data of annual reports are used separately. The XGBoost model is used to analyze its classification effect, and the confusion matrix and ROC curve evaluation methods are used to compare the accuracy of the prediction results between the XGBoost model and the GBDT model, which helps corporate managers to identify the financial risks of enterprises in advance, and at the same time, improves the level of operation control. The results show that the accuracy of the XGBoost model fluctuates around 0.85, and the highest accuracy of the model is 0.883 when the number of its features is 21. The results of the confusion matrix assessment show that the accuracy of the prediction results of the risk-free company of the XGBoost model reaches 94.95%, and the accuracy of the prediction results of the XGBoost model increases by 5.15% compared with that of the GBDT model. This is in accordance with the ROC curve evaluation results. Obviously, the XGBoost model has a better prediction effect and a more stable early warning performance, and the use of the XGBoost model can help the managers of listed companies to be informed of the deterioration of the company’s financial situation as early as possible so that they can implement the corresponding operational control measures to reduce losses in time.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
研友_8Raw2Z发布了新的文献求助10
刚刚
隐形曼青应助独特飞鸟采纳,获得10
刚刚
刚刚
田様应助fish采纳,获得10
1秒前
PXP完成签到,获得积分10
1秒前
longjiafang发布了新的文献求助10
1秒前
Survive完成签到,获得积分10
1秒前
1秒前
赵立韶华完成签到,获得积分10
1秒前
苦咖啡行僧完成签到 ,获得积分10
3秒前
3秒前
3秒前
科研通AI2S应助陈呱呱采纳,获得10
3秒前
Adel完成签到 ,获得积分10
4秒前
QQ完成签到,获得积分10
4秒前
初心发布了新的文献求助10
4秒前
隐形曼青应助高贵火车采纳,获得10
4秒前
lvvyy126完成签到,获得积分10
5秒前
xx发布了新的文献求助10
5秒前
小晴天发布了新的文献求助10
6秒前
Yuksn完成签到,获得积分10
6秒前
6秒前
Christian完成签到,获得积分10
7秒前
Akim应助一条贤与采纳,获得10
8秒前
胡豆豆完成签到,获得积分20
8秒前
科研通AI2S应助好旺采纳,获得10
8秒前
正在发布了新的文献求助10
8秒前
畅快访蕊完成签到,获得积分10
9秒前
画画的baby完成签到 ,获得积分10
9秒前
ZS完成签到,获得积分20
10秒前
gotolian完成签到,获得积分10
11秒前
11秒前
ZK999完成签到,获得积分10
11秒前
AC赵先生完成签到,获得积分10
11秒前
DAISHU发布了新的文献求助30
11秒前
传奇3应助甜甜语薇采纳,获得10
12秒前
安详伯云完成签到,获得积分10
12秒前
med1640完成签到,获得积分10
13秒前
Lucas应助科研通管家采纳,获得10
14秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 600
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3234917
求助须知:如何正确求助?哪些是违规求助? 2881181
关于积分的说明 8218944
捐赠科研通 2548871
什么是DOI,文献DOI怎么找? 1377968
科研通“疑难数据库(出版商)”最低求助积分说明 648095
邀请新用户注册赠送积分活动 623563