亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Generation Natural Killer Cell-Mimic Nanoparticles for Active Targeting of Acute Myeloid Leukemia

髓系白血病 白血病 髓样 癌症研究 免疫学 医学
作者
Hojjat Alizadeh Zeinabad,Wen Jie Yeoh,Philippe Krebs,Carsten Riether,Mihai Lomora,Yara Banz,Éva Szegezdi
出处
期刊:Blood [Elsevier BV]
卷期号:140 (Supplement 1): 10682-10683
标识
DOI:10.1182/blood-2022-166893
摘要

Natural killer (NK) cells play a crucial role in recognizing and killing emerging tumor cells. Via an array of activating and inhibitory receptors, NK cells can target and kill abnormal cells, including tumor cells, without prior antigen sensitization. However, fully-established tumors employ numerous mechanisms to inactivate NK cells or hide from them, for example by shedding NK cell-activating ligands, like NK2GD (Chiossone et al., 2018). Here, we describe the engineering of nanoparticles (NPs) functionalized with tumor-recognizing and cytotoxic components of NK cells to address this problem and develop a nanoparticle-based treatment strategy simulating NK cell functionality. Liposomes were synthesized using the thin film hydration method followed by extrusion and functionalized them with the death ligand, TRAIL (tumor necrosis factor-related apoptosis-inducing ligand), immunoglobulin Fc-binding peptide (FCP, replicating the function of NK CD16 receptor) and the therapeutic antibody, anti-CD38 (daratumumab, Panel A) to target acute myeloid leukemia (AML). Transmission electron microscopy (TEM) and dynamic light scattering (DLS) were used to monitor morphology and size of liposomes. The potential of NK cell-mimic NPs (CD38-NK.NPs) to target and kill AML cells was evaluated on primary AML blasts and a disseminated AML xenograft for which the CD38-positive AML cell line, OCI-AML2 was engrafted into 8-9 week-old female NSG mice. Upon establishment of AML, the mice were injected intraperitoneally (i.p) with 5 doses of either naked liposomes (as vehicle control), soluble TRAIL protein (sTRAIL), LP/TRAIL or CD38-NK.NPs every two days. Tumor burden was monitored by determining the frequency of live human CD45+ cells in the peripheral blood, spleen and bone marrow with flow cytometry. Liposome was chosen as the base of the NP due to its high biocompatibility, biodegradability, cell-like characteristics and capability to penetrate through vessel walls (Pattni, Chupin and Torchilin, 2015). TEM and DLS measurements showed the generated NK.NPs were monodisperse with an average diameter of 145 nm, a size enabling vessel transmigration and avoiding kidney filtration (Gaumet et al., 2008). Immunofluorescent labelling of TRAIL, FCP and antibody verified CD38-NK.NPs functionalization. In vitro, both TRAIL-conjugated liposomes and CD38-NK.NPs were more effective in killing AML cell lines (ML-1, ML-2, Kasumi-1, and OCI-AML2) than sTRAIL, indicating that TRAIL-mediated cytotoxicity can be enhanced by presenting TRAIL in a conformation close to its membrane-bound structure. No significant difference could be detected between LP/TRAIL vs. CD38-NK.NP cytotoxicity in the in vitro assays. On the other hand, CD38-NK.NPs were more effective in killing primary AML blasts than non-targeted, NP-conjugated TRAIL (LP/TRAIL, 13±17% vs 4±15% killing, respectively). Moreover, CD38-NK.NPs showed considerably higher activity relative to the NK cell line, KHYG-1, against CD38-positive AML cell lines. Notably, CD38-NK.NPs showed no significant cytotoxic effect on non-malignant peripheral blood leukocytes. In vivo, NK cell-mimic NPs were more efficient in targeting and eradicating CD38-positive AML cells that either sTRAIL or LP/TRAIL, shown by the reduced percentage of circulating hCD45+ AML cells in treated mice (Panel B). CD38-NK.NPs were also more efficient in inhibiting accumulation of AML cells in the bone and spleen than sTRAIL and LP/TRAIL (Panel B), confirming the ability of CD38-NK.NPs to actively target AML cells expressing the targeted biomarker. Of note, CD38-NK.NPs showed no detectable systemic toxicity or damage to kidneys, liver and pancreas in healthy NSG mice. Overall, we have developed an NK cell-mimic nanoparticle able to actively target AML based on AML surface marker expression without any detectable systematic toxicity. Importantly, due to the modular built of the NK.NPs, they can be functionalized by any therapeutic tumor-targeting antibody via the immunoglobulin-binding peptide (FCP), thus enabling selective targeting tumor cells based on expression of tumor-specific markers and enabling personalized therapy. Figure 1View largeDownload PPTFigure 1View largeDownload PPT Close modal
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小二郎应助科研通管家采纳,获得10
刚刚
刚刚
21秒前
Akim应助平淡的洪纲采纳,获得10
21秒前
24秒前
26秒前
ster223发布了新的文献求助10
27秒前
35秒前
39秒前
婉莹完成签到 ,获得积分10
1分钟前
旺仔先生完成签到 ,获得积分10
1分钟前
1933644015完成签到,获得积分10
1分钟前
1分钟前
幸运小狗完成签到,获得积分20
1分钟前
1分钟前
cc完成签到,获得积分20
1分钟前
情怀应助尊敬的芷卉采纳,获得10
1分钟前
研友_X89o6n完成签到,获得积分10
1分钟前
aa121599完成签到,获得积分20
1分钟前
1分钟前
Owen应助科研通管家采纳,获得10
2分钟前
朴素绿蝶发布了新的文献求助10
2分钟前
痴痴的噜完成签到,获得积分10
2分钟前
江姜酱先生完成签到,获得积分10
2分钟前
搞科研的小李同学完成签到 ,获得积分10
2分钟前
科研通AI6应助朴素绿蝶采纳,获得10
2分钟前
可爱的函函应助hulahula采纳,获得10
2分钟前
fabius0351完成签到 ,获得积分10
2分钟前
李健应助阿米尔盼盼采纳,获得10
2分钟前
2分钟前
hulahula发布了新的文献求助10
2分钟前
2分钟前
2分钟前
长度2到发布了新的文献求助10
2分钟前
xuan发布了新的文献求助10
3分钟前
长度2到完成签到,获得积分10
3分钟前
3分钟前
xtheuv发布了新的文献求助10
3分钟前
Hello应助hulahula采纳,获得10
3分钟前
嘻嘻哈哈完成签到 ,获得积分10
3分钟前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5220819
求助须知:如何正确求助?哪些是违规求助? 4394077
关于积分的说明 13680135
捐赠科研通 4257061
什么是DOI,文献DOI怎么找? 2335959
邀请新用户注册赠送积分活动 1333553
关于科研通互助平台的介绍 1287992