膜
聚碳酸酯
材料科学
化学工程
气体分离
聚合物
选择性
纳米复合材料
溶解度
高分子化学
有机化学
化学
催化作用
复合材料
生物化学
工程类
作者
Ying‐Chi Huang,Li-Fan Chen,Yu-Hsiang Huang,Chien‐Chieh Hu,Chien‐Hsin Wu,Ru‐Jong Jeng
标识
DOI:10.1016/j.cej.2022.139262
摘要
In this study, polymer nanocomposite membranes with recyclability were developed to achieve good mechanical properties and gas permeability in the consumption of a recycled polymeric material. The newly developed process has been realized through the conversion of waste PC to afford key intermediates containing alkoxysilane and phenolic groups. The alkoxysilanes would act as the nucleation sites for sol–gel reactions, whereas the phenolic groups further provided active hydrogens for click reactions in the production of polyurethane/silica (PU/SiO2) nanohybrids, exhibiting microcavity to facilitate gas molecules diffusion for membrane with improved gas permeability. Moreover, the additional use of aliphatic polycarbonate polyol provided enhanced CO2 solubility for gas separation membranes of the PU/SiO2 nanohybrids with a PCO2 permeability of 24.02 barrer and a selectivity of 32.85 (αCO2/N2), which approached the 2008 Robeson upper bounds. Moreover, the joint presence of polycarbonate polyol and silica in the nanohybrids led to high-performance elastomeric properties, with tensile strengths of 35.5 MPa and over 700 % elongation at break, results that exceeded those of previously reported PU-based gas separation membranes. Notably, this PC recycling process featured the newly formed carbamate groups as the reaction sites, enabling the recyclability of PU/SiO2 nanohybrids as the gas separation membranes for CO2 capture and storage in post-consumption materials.
科研通智能强力驱动
Strongly Powered by AbleSci AI