Learning from multiple quantum chemical methods: Δ-learning, transfer learning, co-kriging, and beyond

量子化学 克里金 学习迁移 计算机科学 量子 多样性(控制论) 机器学习 量子化学 人工智能 化学 物理 量子力学 物理化学 分子 电极 电化学 有机化学
作者
Pavlo O. Dral,Tetiana Zubatiuk,Bao-Xin Xue
出处
期刊:Elsevier eBooks [Elsevier]
卷期号:: 491-507 被引量:4
标识
DOI:10.1016/b978-0-323-90049-2.00012-3
摘要

Quantum chemistry (QC) has a vast variety of different methods, with more accurate methods being generally slower. This has several consequences: one is that it is easier to generate more data with less accurate methods for training machine learning (ML), whereas the availability of more accurate data is limited. Another consequence is that the databases are rich in data generated with different methods. In addition, some quantum chemical properties such as heats of formation at 298 K and atomization energies at 0 K are related, but the computational cost of their generation and therefore availability is different too. Such data sets with data from different sources are known as multifidelity data, and ML provides tools to learn from them. Here, we discuss such standard tools, transfer learning (TL), and co-kriging, as well as more specialized tools used in QC such as Δ-learning and hierarchical ML as well as methods going beyond them. We will show that Δ-learning and related methods provide an efficient way to improve low-level quantum chemical methods. At the end of the chapter, case studies for performing Δ-learning, hierarchical ML, and TL are provided.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研小白完成签到,获得积分10
刚刚
sooya发布了新的文献求助20
1秒前
1秒前
tiddler完成签到,获得积分10
1秒前
科研通AI2S应助滴滴采纳,获得10
1秒前
wgx完成签到,获得积分20
1秒前
2秒前
爱静静应助Keep采纳,获得10
2秒前
2秒前
2秒前
小马甲应助韭菜采纳,获得10
3秒前
MADKAI发布了新的文献求助10
3秒前
机智的白猫完成签到,获得积分10
3秒前
李健的小迷弟应助xxx采纳,获得10
3秒前
杜杜完成签到,获得积分10
3秒前
NexusExplorer应助新的心跳采纳,获得10
4秒前
5秒前
5秒前
5秒前
5秒前
5秒前
JamesPei应助小可采纳,获得10
5秒前
粗暴的醉卉完成签到,获得积分10
5秒前
5秒前
科研通AI5应助stt采纳,获得10
6秒前
sunzhiyu233发布了新的文献求助10
7秒前
7秒前
缓缓地安静关注了科研通微信公众号
8秒前
8秒前
送外卖了完成签到,获得积分10
8秒前
Blue_Pig完成签到,获得积分10
8秒前
Orange应助feng采纳,获得10
8秒前
9秒前
考虑考虑发布了新的文献求助10
9秒前
毛慢慢发布了新的文献求助10
9秒前
阿宝发布了新的文献求助10
9秒前
深情安青应助通~采纳,获得10
9秒前
Percy完成签到 ,获得积分10
9秒前
xiuxiu_27发布了新的文献求助10
10秒前
顾矜应助千里采纳,获得10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759