Machine learning-based muscle mass estimation using gait parameters in community-dwelling older adults: A cross-sectional study

肌萎缩 步态 骨骼肌 物理医学与康复 医学 横断面研究 物理疗法 内科学 病理
作者
Kosuke Fujita,Takahiro Hiyama,Kengo Wada,Takahiro Aihara,Yoshihito Matsumura,Taichi Hamatsuka,Yasuko Yoshinaka,Misaka Kimura,Masafumi Kuzuya
出处
期刊:Archives of Gerontology and Geriatrics [Elsevier]
卷期号:103: 104793-104793 被引量:2
标识
DOI:10.1016/j.archger.2022.104793
摘要

Loss of skeletal muscle mass is associated with numerous factors such as metabolic diseases, lack of independence, and mortality in older adults. Therefore, developing simple, safe, and reliable tools for assessing skeletal muscle mass is needed. Some studies recently reported that the risks of the incidence of geriatric conditions could be estimated by analyzing older adults’ gait; however, no studies have assessed the association between gait parameters and skeletal muscle loss in older adults. In this study, we applied machine learning approach to the gait parameters derived from three-dimensional skeletal models to distinguish older adults’ low skeletal muscle mass. We also identified the most important gait parameters for detecting low muscle mass. Sixty-six community-dwelling older adults were recruited. Thirty-two gait parameters were created using a three-dimensional skeletal model involving 10-meter comfortable walking. After skeletal muscle mass measurement using a bioimpedance analyzer, low muscle mass was judged in accordance with the guideline of the Asia Working Group for Sarcopenia. The eXtreme gradient boosting (XGBoost) model was applied to discriminate between low and high skeletal muscle mass. Eleven subjects had a low muscle mass. The c-statistics, sensitivity, specificity, precision of the final model were 0.7, 59.5%, 81.4%, and 70.5%, respectively. The top three dominant gait parameters were, in order of strongest effect, stride length, hip dynamic range of motion, and trunk rotation variability. Machine learning-based gait analysis is a useful approach to determine the low skeletal muscle mass of community-dwelling older adults.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
汉堡包应助开心采纳,获得10
1秒前
1秒前
充电宝应助粉红三倍速采纳,获得10
2秒前
Mercury2024发布了新的文献求助10
4秒前
XIL发布了新的文献求助10
4秒前
5秒前
Darren发布了新的文献求助50
6秒前
lihongchi完成签到,获得积分10
6秒前
烁果累累完成签到 ,获得积分10
7秒前
8秒前
8秒前
12秒前
鹏程万里发布了新的文献求助10
13秒前
13秒前
Lionnn完成签到 ,获得积分10
14秒前
16秒前
憨憨发布了新的文献求助10
18秒前
111111完成签到,获得积分10
18秒前
张小龙完成签到 ,获得积分10
19秒前
20秒前
20秒前
可爱的函函应助清爽聋五采纳,获得10
20秒前
加菲丰丰完成签到,获得积分0
20秒前
23秒前
sophieCCM0302发布了新的文献求助10
26秒前
星辰大海应助竹外桃花采纳,获得10
27秒前
小秃兄完成签到,获得积分10
27秒前
28秒前
and999完成签到,获得积分10
29秒前
31秒前
小马到处跑完成签到,获得积分10
32秒前
尼莫发布了新的文献求助10
34秒前
sophieCCM0302完成签到,获得积分10
35秒前
wlz发布了新的文献求助10
37秒前
38秒前
桐桐应助温柔半梦采纳,获得10
38秒前
39秒前
gege完成签到 ,获得积分10
39秒前
申思完成签到,获得积分10
40秒前
42秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137638
求助须知:如何正确求助?哪些是违规求助? 2788565
关于积分的说明 7787590
捐赠科研通 2444902
什么是DOI,文献DOI怎么找? 1300139
科研通“疑难数据库(出版商)”最低求助积分说明 625814
版权声明 601023