钒
镁
材料科学
无机化学
氧化钒
电化学
循环伏安法
拉曼光谱
氧化物
阴极
水溶液
化学工程
化学
电极
物理化学
冶金
物理
光学
工程类
作者
Milica M. Vasić,Miloš Milović,Danica Bajuk‐Bogdanović,Tamara Petrović,Milica Vujković
出处
期刊:Nanomaterials
[MDPI AG]
日期:2022-08-12
卷期号:12 (16): 2767-2767
被引量:2
摘要
Vanadium-oxide-based materials exist with various vanadium oxidation states having rich chemistry and ability to form layered structures. These properties make them suitable for different applications, including energy conversion and storage. Magnesium vanadium oxide materials obtained using simple preparation route were studied as potential cathodes for rechargeable aqueous magnesium ion batteries. Structural characterization of the synthesized materials was performed using XRD and vibrational spectroscopy techniques (FTIR and Raman spectroscopy). Electrochemical behavior of the materials, observed by cyclic voltammetry, was further explained by BVS calculations. Sluggish Mg2+ ion kinetics in MgV2O6 was shown as a result of poor electronic and ionic wiring. Complex redox behavior of the studied materials is dependent on phase composition and metal ion inserted/deinserted into/from the material. Among the studied magnesium vanadium oxides, the multiphase oxide systems exhibited better Mg2+ insertion/deinsertion performances than the single-phase ones. Carbon addition was found to be an effective dual strategy for enhancing the charge storage behavior of MgV2O6.
科研通智能强力驱动
Strongly Powered by AbleSci AI