Estimate of Cloudy-Sky Surface Emissivity From Passive Microwave Satellite Data Using Machine Learning

遥感 光谱辐射计 发射率 环境科学 天空 卫星 辐射计 微波食品加热 气象学 计算机科学 光学 物理 电信 地质学 天文 反射率
作者
Xinming Zhu,Xiaoning Song,Pei Leng,Zhao-Liang Li,Xiaotao Li,Liang Gao,Da Guo
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-20 被引量:5
标识
DOI:10.1109/tgrs.2022.3196127
摘要

The derivation of microwave land surface emissivity (MLSE) under various weather conditions from the microwave radiometer plays a crucial role in acquiring land surface and atmospheric parameters. Nevertheless, currently, most existing studies mainly focus on the clear-sky scenarios owing to a lack of cloudy-sky land surface temperature (LST) and uncertainties in simulating the scattering and emission properties of atmospheric hydrometeors. Under this background, with satellite observations and the random forest (RF) model, this study proposes a method to estimate the MLSE under cloudy skies. First, clear-sky MLSEs with satisfactory accuracy are retrieved by using the brightness temperatures (BTs) from the Advanced Microwave Scanning Radiometer-Earth sensor, LSTs from the Moderate Resolution Imaging Spectroradiometer, and atmospheric profiles from the ERA5 reanalysis. Then, the relation among the clear-sky MLSE and related impact factors is built with the RF and extended to the cloudy-sky environment for generating all-weather MLSEs with a 0.25°. The results show that the input datasets present a considerable impact on the calculation of instantaneous MLSE, and a 5.73 K bias of ERA5 LST may generate a 0.014-0.021 error in the MLSE from 6.9 to 89 GHz horizontal polarization, while the impacts of BT and profile uncertainties on the MLSE are smaller. The retrieved clear-sky MLSE is coincident with the existing MLSE for the spatiotemporal variations, and there is an average difference range from -0.035 to 0.035 in January 2008. Meanwhile, the constructed RF model can successfully apply to cloudy-sky status and recover the MLSE image gaps affected by cloud contamination.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
共享精神应助研友_Ze2vV8采纳,获得10
1秒前
微毒麻醉完成签到,获得积分10
1秒前
果果完成签到,获得积分10
3秒前
3秒前
是真灵还是机灵完成签到 ,获得积分10
4秒前
Tabby完成签到,获得积分10
5秒前
6秒前
7秒前
54完成签到,获得积分10
7秒前
song完成签到 ,获得积分10
8秒前
9秒前
光崽是谁发布了新的文献求助10
11秒前
Eva完成签到,获得积分10
11秒前
淞33完成签到 ,获得积分10
11秒前
朴素的尔云完成签到,获得积分10
12秒前
13秒前
Soph发布了新的文献求助10
14秒前
SD发布了新的文献求助20
14秒前
善学以致用应助研友_Ze2vV8采纳,获得10
15秒前
江毅关注了科研通微信公众号
16秒前
烟花应助54采纳,获得10
18秒前
dmy应助重要的奇异果采纳,获得10
19秒前
22秒前
23秒前
23秒前
开心的西瓜完成签到,获得积分10
24秒前
26秒前
26秒前
害怕的曼容完成签到,获得积分10
27秒前
Dingdang完成签到 ,获得积分10
27秒前
Xiaohu完成签到,获得积分10
27秒前
Akim应助N0V1CE采纳,获得10
27秒前
李健应助研友_Ze2vV8采纳,获得10
28秒前
江毅发布了新的文献求助10
28秒前
生椰拿铁不加生椰完成签到 ,获得积分10
29秒前
曾经如是发布了新的文献求助10
29秒前
30秒前
CherylZhao完成签到,获得积分10
31秒前
科研通AI5应助LiChangYuan采纳,获得10
31秒前
54发布了新的文献求助10
31秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3741439
求助须知:如何正确求助?哪些是违规求助? 3284100
关于积分的说明 10038416
捐赠科研通 3000937
什么是DOI,文献DOI怎么找? 1646889
邀请新用户注册赠送积分活动 783919
科研通“疑难数据库(出版商)”最低求助积分说明 750478