Density prediction for selective laser melting fabricated of CuCrZr alloy using hybrid Gaussian boosted regression

材料科学 梯度升压 选择性激光熔化 克里金 高斯过程 过程变量 高斯分布 Boosting(机器学习) 聚类分析 计算机科学 机器学习 过程(计算) 人工智能 复合材料 量子力学 微观结构 操作系统 物理 随机森林
作者
Guangzhao Yang,Mingxuan Cao,Yixun Cai,Yang Bao-jian,Houle Gan,Bin Fu,Liang Li,Ying Wang,Matthew M. F. Yuen
出处
期刊:Journal of Laser Applications [Laser Institute of America]
卷期号:37 (1)
标识
DOI:10.2351/7.0001414
摘要

Selective laser melting (SLM), an emerging technology, constructs components through layer-by-layer material deposition and has gained popularity in the industry due to its advantages such as shorter lead time, higher flexibility, lower material wastage, and the capability to fabricate complex geometries. However, the development of process databases for new materials is often time-consuming and laborious because SLM involves multiple physical fields and multiple process steps with numerous process parameters. Recently, machine learning is renowned for its excellent capabilities in tasks such as classification, regression, and clustering. In this study, hybrid Gaussian boosted regression that combines Gaussian process regression with gradient boosting machine was used to obtain a process database for CuCrZr alloy, optimizing for density with laser power and scanning speed as characteristic parameters, under limited samples. A machine learning model was developed using fivefold cross-training on 36 datasets. With a determination coefficient (R2) of 0.96587, the model demonstrated a high level of fit. Next, by extending the prediction range, we achieved process parameters for the highest five densities of samples. Finally, the model’s precision was confirmed with experiments on the five predicted maximum densities, with all predictions falling within a ±0.09% error margin from the experimental values. This research precisely predicted the densities of SLM-formed CuCrZr parts, created a comprehensive process parameter database, and substantiated both theoretical and practical backing for the 3D printing of CuCrZr parts.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
重要的耳机完成签到,获得积分10
1秒前
海的声音发布了新的文献求助10
2秒前
qing发布了新的文献求助10
2秒前
enterdawn发布了新的文献求助10
2秒前
我爱科研发布了新的文献求助10
2秒前
4秒前
4秒前
FashionBoy应助东北萧亚轩采纳,获得10
4秒前
着急的盼山完成签到,获得积分10
4秒前
5秒前
Susu城发布了新的文献求助10
5秒前
领导范儿应助优雅的孤云采纳,获得10
6秒前
共享精神应助自觉的语海采纳,获得10
7秒前
Singularity应助科研通管家采纳,获得10
8秒前
Joker应助科研通管家采纳,获得10
9秒前
Singularity应助科研通管家采纳,获得10
9秒前
NexusExplorer应助科研通管家采纳,获得10
9秒前
Jasper应助科研通管家采纳,获得10
9秒前
9秒前
乐乐应助科研通管家采纳,获得10
9秒前
桐桐应助科研通管家采纳,获得10
9秒前
ohhhh发布了新的文献求助10
9秒前
Joker应助科研通管家采纳,获得10
9秒前
爆米花应助科研通管家采纳,获得10
9秒前
天天快乐应助科研通管家采纳,获得100
9秒前
9秒前
10秒前
东阳完成签到,获得积分10
11秒前
瘦瘦不乐发布了新的文献求助10
11秒前
mhl11应助小雨二月采纳,获得10
12秒前
激昂的熊猫给激昂的熊猫的求助进行了留言
13秒前
13秒前
华仔应助小弈采纳,获得10
14秒前
月亮应助阿中采纳,获得10
14秒前
15秒前
enterdawn完成签到,获得积分10
16秒前
16秒前
笑点低的云朵完成签到,获得积分10
18秒前
18秒前
U87应助田一点采纳,获得10
18秒前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Zeitschrift für Orient-Archäologie 500
Smith-Purcell Radiation 500
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3340913
求助须知:如何正确求助?哪些是违规求助? 2968743
关于积分的说明 8634846
捐赠科研通 2648227
什么是DOI,文献DOI怎么找? 1450104
科研通“疑难数据库(出版商)”最低求助积分说明 671704
邀请新用户注册赠送积分活动 660815