Density prediction for selective laser melting fabricated of CuCrZr alloy using hybrid Gaussian boosted regression

材料科学 梯度升压 选择性激光熔化 克里金 高斯过程 过程变量 高斯分布 Boosting(机器学习) 聚类分析 计算机科学 机器学习 过程(计算) 人工智能 复合材料 量子力学 微观结构 操作系统 物理 随机森林
作者
Guangzhao Yang,Mingxuan Cao,Yixun Cai,Yang Bao-jian,Houle Gan,Bin Fu,Liang Li,Ying Wang,Matthew M. F. Yuen
出处
期刊:Journal of Laser Applications [Laser Institute of America]
卷期号:37 (1) 被引量:2
标识
DOI:10.2351/7.0001414
摘要

Selective laser melting (SLM), an emerging technology, constructs components through layer-by-layer material deposition and has gained popularity in the industry due to its advantages such as shorter lead time, higher flexibility, lower material wastage, and the capability to fabricate complex geometries. However, the development of process databases for new materials is often time-consuming and laborious because SLM involves multiple physical fields and multiple process steps with numerous process parameters. Recently, machine learning is renowned for its excellent capabilities in tasks such as classification, regression, and clustering. In this study, hybrid Gaussian boosted regression that combines Gaussian process regression with gradient boosting machine was used to obtain a process database for CuCrZr alloy, optimizing for density with laser power and scanning speed as characteristic parameters, under limited samples. A machine learning model was developed using fivefold cross-training on 36 datasets. With a determination coefficient (R2) of 0.96587, the model demonstrated a high level of fit. Next, by extending the prediction range, we achieved process parameters for the highest five densities of samples. Finally, the model’s precision was confirmed with experiments on the five predicted maximum densities, with all predictions falling within a ±0.09% error margin from the experimental values. This research precisely predicted the densities of SLM-formed CuCrZr parts, created a comprehensive process parameter database, and substantiated both theoretical and practical backing for the 3D printing of CuCrZr parts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
哈哈完成签到 ,获得积分20
1秒前
2秒前
星辰大海应助马铃薯采纳,获得10
2秒前
3秒前
sweet完成签到,获得积分10
3秒前
摸鱼科夫斯基完成签到,获得积分10
3秒前
4秒前
寒天抒完成签到,获得积分10
4秒前
bkagyin应助1134采纳,获得10
5秒前
刘钊扬发布了新的文献求助10
5秒前
拼搏的访天完成签到,获得积分10
5秒前
无花果应助笑笑采纳,获得30
5秒前
6秒前
王多鱼完成签到,获得积分10
6秒前
脑洞疼应助lf采纳,获得10
6秒前
tian完成签到,获得积分10
7秒前
7秒前
俭朴士晋发布了新的文献求助10
8秒前
田様应助北北贝贝采纳,获得10
9秒前
说几句完成签到,获得积分10
9秒前
背后寒烟发布了新的文献求助10
10秒前
桂花乌龙完成签到,获得积分10
10秒前
甘特发布了新的文献求助10
10秒前
王多鱼发布了新的文献求助10
12秒前
充电宝应助安平采纳,获得10
12秒前
科研通AI6应助月月采纳,获得10
13秒前
量子星尘发布了新的文献求助10
17秒前
17秒前
浮游应助董宇峰采纳,获得10
17秒前
HMM完成签到,获得积分10
18秒前
19秒前
科研通AI6应助俭朴士晋采纳,获得10
19秒前
19秒前
19秒前
baibai完成签到,获得积分10
19秒前
xilu完成签到,获得积分10
20秒前
20秒前
尼古拉斯.科研.红完成签到 ,获得积分10
21秒前
小心发布了新的文献求助10
22秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5646711
求助须知:如何正确求助?哪些是违规求助? 4772234
关于积分的说明 15036353
捐赠科研通 4805530
什么是DOI,文献DOI怎么找? 2569751
邀请新用户注册赠送积分活动 1526689
关于科研通互助平台的介绍 1485889