multiHIVE: Hierarchical Multimodal Deep Generative Model for Single-cell Multiomics Integration

生成语法 计算机科学 生成模型 人工智能
作者
Anirudh Nanduri,Musale Krushna Pavan,Kushagra Pandey,Hamim Zafar
标识
DOI:10.1101/2025.01.28.635222
摘要

Recently developed single-cell multiomics technologies are enhancing our understanding of cellular heterogeneity by providing multiple views of a biological system. CITE-seq (cellular indexing of transcriptomes and epitopes by sequencing) is one such multiomics assay, with the ability to connect cell states to functions by simultaneously profiling RNA and surface proteins from the same cell. However, the distinct technical characteristics of these data modalities pose significant challenges to their integration into a cohesive representation of cellular identity. Here we present multiHIVE, a hierarchical multimodal deep generative model for inferring cellular embeddings by integrating CITE-seq data modalities. multiHIVE employs hierarchically stacked latent variables as well as modality-specific latent variables to capture shared and private information from the modalities respectively, facilitating integration, denoising and imputation tasks. Extensive benchmarking using gold-standard real and simulated datasets demonstrates multiHIVE's superiority in integrating CITE-seq datasets. Moreover, multiHIVE outperformed the state-of-the-art methods in imputing missing protein measurements and integration of CITE-seq dataset with unimodal dataset. Using a thymocyte development dataset, we showed that multiHIVE's cellular embeddings can lead to improved trajectory inference and gene trend identification. Finally, using datasets across development and disease, we demonstrated that factorization of multiHIVE-inferred denoised expression into gene expression programs aids in identifying biological processes at multiple levels of cellular hierarchy. multiHIVE is implemented in Python and is publicly available at https://github.com/Zafar-Lab/multiHIVE.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ha完成签到,获得积分10
刚刚
zh完成签到,获得积分10
3秒前
罗中翠完成签到,获得积分10
3秒前
4秒前
mmmm发布了新的文献求助10
4秒前
Nichols完成签到,获得积分10
4秒前
不信看不懂文献完成签到,获得积分10
6秒前
6秒前
小李顺利毕业完成签到,获得积分10
7秒前
7秒前
小可发布了新的文献求助10
8秒前
9秒前
9秒前
Myrna完成签到,获得积分10
9秒前
11秒前
12秒前
wp完成签到,获得积分10
12秒前
Akim应助武雨寒采纳,获得10
13秒前
SageHe完成签到,获得积分10
13秒前
Linlin发布了新的文献求助10
13秒前
14秒前
乐乐应助澡雪采纳,获得10
14秒前
Litchi完成签到,获得积分20
14秒前
xliiii发布了新的文献求助10
15秒前
15秒前
懂梦完成签到,获得积分10
15秒前
吴1完成签到,获得积分10
16秒前
16秒前
萧萧彭完成签到,获得积分20
16秒前
Wellnemo完成签到,获得积分10
18秒前
英姑应助nhh采纳,获得10
18秒前
ssw发布了新的文献求助10
19秒前
19秒前
123发布了新的文献求助10
20秒前
我是老大应助火星上书本采纳,获得10
21秒前
23秒前
Wellnemo发布了新的文献求助10
24秒前
量子星尘发布了新的文献求助10
24秒前
Grape完成签到,获得积分10
25秒前
jh完成签到 ,获得积分10
25秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3975816
求助须知:如何正确求助?哪些是违规求助? 3520159
关于积分的说明 11201128
捐赠科研通 3256541
什么是DOI,文献DOI怎么找? 1798347
邀请新用户注册赠送积分活动 877539
科研通“疑难数据库(出版商)”最低求助积分说明 806426