multiHIVE: Hierarchical Multimodal Deep Generative Model for Single-cell Multiomics Integration

生成语法 计算机科学 生成模型 人工智能
作者
Anirudh Nanduri,Musale Krushna Pavan,Kushagra Pandey,Hamim Zafar
标识
DOI:10.1101/2025.01.28.635222
摘要

Recently developed single-cell multiomics technologies are enhancing our understanding of cellular heterogeneity by providing multiple views of a biological system. CITE-seq (cellular indexing of transcriptomes and epitopes by sequencing) is one such multiomics assay, with the ability to connect cell states to functions by simultaneously profiling RNA and surface proteins from the same cell. However, the distinct technical characteristics of these data modalities pose significant challenges to their integration into a cohesive representation of cellular identity. Here we present multiHIVE, a hierarchical multimodal deep generative model for inferring cellular embeddings by integrating CITE-seq data modalities. multiHIVE employs hierarchically stacked latent variables as well as modality-specific latent variables to capture shared and private information from the modalities respectively, facilitating integration, denoising and imputation tasks. Extensive benchmarking using gold-standard real and simulated datasets demonstrates multiHIVE's superiority in integrating CITE-seq datasets. Moreover, multiHIVE outperformed the state-of-the-art methods in imputing missing protein measurements and integration of CITE-seq dataset with unimodal dataset. Using a thymocyte development dataset, we showed that multiHIVE's cellular embeddings can lead to improved trajectory inference and gene trend identification. Finally, using datasets across development and disease, we demonstrated that factorization of multiHIVE-inferred denoised expression into gene expression programs aids in identifying biological processes at multiple levels of cellular hierarchy. multiHIVE is implemented in Python and is publicly available at https://github.com/Zafar-Lab/multiHIVE.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助weing采纳,获得30
刚刚
蓝天发布了新的文献求助10
2秒前
2秒前
王王的狗子完成签到 ,获得积分10
3秒前
知愈完成签到,获得积分10
5秒前
梁jj发布了新的文献求助10
6秒前
cassie完成签到,获得积分10
6秒前
7秒前
8秒前
8秒前
12秒前
朝阳满意发布了新的文献求助10
12秒前
知愈发布了新的文献求助10
13秒前
danggui完成签到,获得积分10
15秒前
幽默的煎饼发布了新的文献求助100
15秒前
Diane发布了新的文献求助10
15秒前
小巧寻桃发布了新的文献求助10
16秒前
dream完成签到 ,获得积分10
16秒前
加油发布了新的文献求助10
16秒前
脑洞疼应助冷酷莫言采纳,获得10
16秒前
18秒前
21秒前
海洋完成签到,获得积分10
21秒前
团子完成签到,获得积分10
22秒前
Lucas应助十一采纳,获得10
22秒前
zhongyinanke发布了新的文献求助50
23秒前
lele发布了新的文献求助10
23秒前
华仔应助小巧寻桃采纳,获得10
23秒前
hhh完成签到,获得积分10
24秒前
南极以南完成签到,获得积分10
24秒前
酷炫的幻丝完成签到 ,获得积分10
26秒前
27秒前
zxh发布了新的文献求助10
31秒前
31秒前
受伤的无心完成签到 ,获得积分10
32秒前
平淡从霜发布了新的文献求助10
32秒前
36秒前
zxh完成签到,获得积分10
39秒前
39秒前
1111111发布了新的文献求助10
41秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560490
求助须知:如何正确求助?哪些是违规求助? 4645747
关于积分的说明 14676028
捐赠科研通 4586936
什么是DOI,文献DOI怎么找? 2516635
邀请新用户注册赠送积分活动 1490182
关于科研通互助平台的介绍 1461055