已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

multiHIVE: Hierarchical Multimodal Deep Generative Model for Single-cell Multiomics Integration

生成语法 计算机科学 生成模型 人工智能
作者
Anirudh Nanduri,Musale Krushna Pavan,Kushagra Pandey,Hamim Zafar
标识
DOI:10.1101/2025.01.28.635222
摘要

Recently developed single-cell multiomics technologies are enhancing our understanding of cellular heterogeneity by providing multiple views of a biological system. CITE-seq (cellular indexing of transcriptomes and epitopes by sequencing) is one such multiomics assay, with the ability to connect cell states to functions by simultaneously profiling RNA and surface proteins from the same cell. However, the distinct technical characteristics of these data modalities pose significant challenges to their integration into a cohesive representation of cellular identity. Here we present multiHIVE, a hierarchical multimodal deep generative model for inferring cellular embeddings by integrating CITE-seq data modalities. multiHIVE employs hierarchically stacked latent variables as well as modality-specific latent variables to capture shared and private information from the modalities respectively, facilitating integration, denoising and imputation tasks. Extensive benchmarking using gold-standard real and simulated datasets demonstrates multiHIVE's superiority in integrating CITE-seq datasets. Moreover, multiHIVE outperformed the state-of-the-art methods in imputing missing protein measurements and integration of CITE-seq dataset with unimodal dataset. Using a thymocyte development dataset, we showed that multiHIVE's cellular embeddings can lead to improved trajectory inference and gene trend identification. Finally, using datasets across development and disease, we demonstrated that factorization of multiHIVE-inferred denoised expression into gene expression programs aids in identifying biological processes at multiple levels of cellular hierarchy. multiHIVE is implemented in Python and is publicly available at https://github.com/Zafar-Lab/multiHIVE.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
杀鸡发布了新的文献求助10
1秒前
机灵芷文发布了新的文献求助10
1秒前
2秒前
2秒前
4秒前
井盖发发布了新的文献求助10
4秒前
一只大鸭梨完成签到,获得积分10
5秒前
思源应助gucci采纳,获得10
6秒前
6秒前
李健的粉丝团团长应助wei采纳,获得10
6秒前
LY发布了新的文献求助10
6秒前
11发布了新的文献求助10
8秒前
大个应助接受所有饼干采纳,获得10
9秒前
10秒前
称心剑鬼发布了新的文献求助10
11秒前
11秒前
Lukomere发布了新的文献求助10
12秒前
楼醉山完成签到,获得积分10
14秒前
可爱的函函应助井盖发采纳,获得10
16秒前
caixukun发布了新的文献求助10
17秒前
猫小乐C完成签到,获得积分10
17秒前
guojingjing发布了新的文献求助10
18秒前
定位心海的锚完成签到,获得积分10
19秒前
称心剑鬼完成签到,获得积分10
20秒前
zhou269完成签到,获得积分10
20秒前
jinan完成签到,获得积分10
21秒前
22秒前
25秒前
jinan发布了新的文献求助10
26秒前
Criminology34举报饼饼求助涉嫌违规
26秒前
26秒前
27秒前
27秒前
天天快乐应助keke采纳,获得10
31秒前
科研通AI6应助Lyon采纳,获得10
32秒前
33秒前
汉堡包应助如意修洁采纳,获得10
34秒前
gucci发布了新的文献求助10
34秒前
36秒前
36秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 1000
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5355874
求助须知:如何正确求助?哪些是违规求助? 4487717
关于积分的说明 13970886
捐赠科研通 4388491
什么是DOI,文献DOI怎么找? 2411104
邀请新用户注册赠送积分活动 1403650
关于科研通互助平台的介绍 1377279