亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

multiHIVE: Hierarchical Multimodal Deep Generative Model for Single-cell Multiomics Integration

生成语法 计算机科学 生成模型 人工智能
作者
Anirudh Nanduri,Musale Krushna Pavan,Kushagra Pandey,Hamim Zafar
标识
DOI:10.1101/2025.01.28.635222
摘要

Recently developed single-cell multiomics technologies are enhancing our understanding of cellular heterogeneity by providing multiple views of a biological system. CITE-seq (cellular indexing of transcriptomes and epitopes by sequencing) is one such multiomics assay, with the ability to connect cell states to functions by simultaneously profiling RNA and surface proteins from the same cell. However, the distinct technical characteristics of these data modalities pose significant challenges to their integration into a cohesive representation of cellular identity. Here we present multiHIVE, a hierarchical multimodal deep generative model for inferring cellular embeddings by integrating CITE-seq data modalities. multiHIVE employs hierarchically stacked latent variables as well as modality-specific latent variables to capture shared and private information from the modalities respectively, facilitating integration, denoising and imputation tasks. Extensive benchmarking using gold-standard real and simulated datasets demonstrates multiHIVE's superiority in integrating CITE-seq datasets. Moreover, multiHIVE outperformed the state-of-the-art methods in imputing missing protein measurements and integration of CITE-seq dataset with unimodal dataset. Using a thymocyte development dataset, we showed that multiHIVE's cellular embeddings can lead to improved trajectory inference and gene trend identification. Finally, using datasets across development and disease, we demonstrated that factorization of multiHIVE-inferred denoised expression into gene expression programs aids in identifying biological processes at multiple levels of cellular hierarchy. multiHIVE is implemented in Python and is publicly available at https://github.com/Zafar-Lab/multiHIVE.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
EliotFang发布了新的文献求助10
7秒前
沉沉完成签到 ,获得积分0
9秒前
31秒前
36秒前
Frank发布了新的文献求助10
37秒前
oleskarabach发布了新的文献求助10
40秒前
EliotFang完成签到,获得积分10
43秒前
fsznc完成签到 ,获得积分0
58秒前
科研通AI2S应助科研通管家采纳,获得10
59秒前
oleskarabach发布了新的文献求助10
1分钟前
CipherSage应助科研通管家采纳,获得10
2分钟前
开心完成签到 ,获得积分10
3分钟前
3分钟前
顾矜应助zsc采纳,获得10
3分钟前
榆果子发布了新的文献求助10
3分钟前
榆果子完成签到,获得积分10
3分钟前
我是笨蛋完成签到 ,获得积分10
3分钟前
4分钟前
4分钟前
荆棘鸟发布了新的文献求助10
4分钟前
正传阿飞完成签到,获得积分10
4分钟前
隐形曼青应助荆棘鸟采纳,获得10
4分钟前
荆棘鸟完成签到,获得积分10
4分钟前
4分钟前
Frank完成签到,获得积分10
5分钟前
鲤鱼听荷完成签到 ,获得积分10
6分钟前
6分钟前
tabblk发布了新的文献求助10
6分钟前
赘婿应助科研通管家采纳,获得10
6分钟前
QCB完成签到 ,获得积分10
7分钟前
陈杰发布了新的文献求助10
7分钟前
宋艳芳完成签到,获得积分10
7分钟前
陈杰完成签到,获得积分10
8分钟前
传奇3应助蒙豆儿采纳,获得10
8分钟前
8分钟前
蒙豆儿发布了新的文献求助10
8分钟前
汉堡包应助科研通管家采纳,获得10
8分钟前
乐乐应助科研通管家采纳,获得10
8分钟前
9分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
On the Validity of the Independent-Particle Model and the Sum-rule Approach to the Deeply Bound States in Nuclei 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4582317
求助须知:如何正确求助?哪些是违规求助? 4000095
关于积分的说明 12382127
捐赠科研通 3674975
什么是DOI,文献DOI怎么找? 2025631
邀请新用户注册赠送积分活动 1059307
科研通“疑难数据库(出版商)”最低求助积分说明 945946