multiHIVE: Hierarchical Multimodal Deep Generative Model for Single-cell Multiomics Integration

生成语法 计算机科学 生成模型 人工智能
作者
Anirudh Nanduri,Musale Krushna Pavan,Kushagra Pandey,Hamim Zafar
标识
DOI:10.1101/2025.01.28.635222
摘要

Recently developed single-cell multiomics technologies are enhancing our understanding of cellular heterogeneity by providing multiple views of a biological system. CITE-seq (cellular indexing of transcriptomes and epitopes by sequencing) is one such multiomics assay, with the ability to connect cell states to functions by simultaneously profiling RNA and surface proteins from the same cell. However, the distinct technical characteristics of these data modalities pose significant challenges to their integration into a cohesive representation of cellular identity. Here we present multiHIVE, a hierarchical multimodal deep generative model for inferring cellular embeddings by integrating CITE-seq data modalities. multiHIVE employs hierarchically stacked latent variables as well as modality-specific latent variables to capture shared and private information from the modalities respectively, facilitating integration, denoising and imputation tasks. Extensive benchmarking using gold-standard real and simulated datasets demonstrates multiHIVE's superiority in integrating CITE-seq datasets. Moreover, multiHIVE outperformed the state-of-the-art methods in imputing missing protein measurements and integration of CITE-seq dataset with unimodal dataset. Using a thymocyte development dataset, we showed that multiHIVE's cellular embeddings can lead to improved trajectory inference and gene trend identification. Finally, using datasets across development and disease, we demonstrated that factorization of multiHIVE-inferred denoised expression into gene expression programs aids in identifying biological processes at multiple levels of cellular hierarchy. multiHIVE is implemented in Python and is publicly available at https://github.com/Zafar-Lab/multiHIVE.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Megalbox发布了新的文献求助10
刚刚
汉堡包应助HAHA采纳,获得10
1秒前
核桃发布了新的文献求助10
1秒前
Xuan发布了新的文献求助10
1秒前
冷傲的薯片完成签到 ,获得积分10
1秒前
丘奇发布了新的文献求助10
1秒前
2秒前
近在远方发布了新的文献求助50
2秒前
明明发布了新的文献求助10
2秒前
暴发户发布了新的文献求助10
2秒前
ming完成签到,获得积分10
2秒前
3秒前
淡定可乐完成签到,获得积分10
3秒前
Lucas应助安详晓亦采纳,获得10
3秒前
3秒前
ajimu发布了新的文献求助10
4秒前
4秒前
4秒前
4秒前
喵喵完成签到,获得积分10
5秒前
6秒前
yanzu完成签到,获得积分10
6秒前
6秒前
6秒前
zhouliqun发布了新的文献求助10
7秒前
7秒前
weizhao发布了新的文献求助10
8秒前
8秒前
NexusExplorer应助舒克采纳,获得10
8秒前
天天快乐应助zmr123采纳,获得10
8秒前
8秒前
小高同学发布了新的文献求助10
9秒前
9秒前
龙龙冲发布了新的文献求助10
9秒前
xy发布了新的文献求助10
9秒前
9秒前
科研通AI2S应助果汁橡皮糖采纳,获得10
9秒前
10秒前
顾矜应助明明采纳,获得10
10秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
King Tyrant 720
Lectures in probability theory and mathematical statistics - 3rd Edition 500
The Synthesis of Simplified Analogues of Crambescin B Carboxylic Acid and Their Inhibitory Activity of Voltage-Gated Sodium Channels: New Aspects of Structure–Activity Relationships 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5597571
求助须知:如何正确求助?哪些是违规求助? 4683065
关于积分的说明 14828223
捐赠科研通 4661040
什么是DOI,文献DOI怎么找? 2536729
邀请新用户注册赠送积分活动 1504315
关于科研通互助平台的介绍 1470200