Transformer-generated atomic embeddings to enhance prediction accuracy of crystal properties with machine learning

变压器 计算机科学 机器学习 人工智能 材料科学 电气工程 工程类 电压
作者
Luozhijie Jin,Zijian Du,Le Shu,Yan Cen,Yuanfeng Xu,Yongfeng Mei,Hao Zhang
出处
期刊:Nature Communications [Nature Portfolio]
卷期号:16 (1)
标识
DOI:10.1038/s41467-025-56481-x
摘要

Accelerating the discovery of novel crystal materials by machine learning is crucial for advancing various technologies from clean energy to information processing. The machine-learning models for prediction of materials properties require embedding atomic information, while traditional methods have limited effectiveness in enhancing prediction accuracy. Here, we proposed an atomic embedding strategy called universal atomic embeddings (UAEs) for their broad applicability as atomic fingerprints, and generated the UAE tensors based on the proposed CrystalTransformer model. By performing experiments on widely-used materials database, our CrystalTransformer-based UAEs (ct-UAEs) are shown to accurately capture complex atomic features, leading to a 14% improvement in prediction accuracy on CGCNN and 18% on ALIGNN when using formation energies as the target, based on the Materials Project database. We also demonstrated the good transferability of ct-UAEs across various databases. Based on the clustering analysis for multi-task ct-UAEs, the elements in the periodic table can be categorized with reasonable connections between atomic features and targeted crystal properties. After applying ct-UAEs to predict formation energy in hybrid perovskites database, we realized an improvement in accuracy, with a 34% boost in MEGNET and 16% in CGCNN, showcasing their potential as atomic fingerprints to address the data scarcity challenges. Atomic representations are crucial for building reliable and transferable machine learning models. Here, the authors propose transformer-based universal atomic embeddings to enhance the prediction accuracy of crystal properties.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
AlinaLee应助科研通管家采纳,获得10
刚刚
刚刚
FashionBoy应助科研通管家采纳,获得10
刚刚
科研通AI5应助刘笑白采纳,获得10
刚刚
热忱未减应助科研通管家采纳,获得20
刚刚
香蕉觅云应助科研通管家采纳,获得20
刚刚
研友_VZG7GZ应助科研通管家采纳,获得10
刚刚
深情安青应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
Jasper应助科研通管家采纳,获得10
1秒前
大个应助科研通管家采纳,获得10
1秒前
顾矜应助科研通管家采纳,获得10
1秒前
2秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
天天快乐应助科研通管家采纳,获得10
2秒前
2秒前
852应助科研通管家采纳,获得30
2秒前
小二郎应助科研通管家采纳,获得10
2秒前
veinard应助科研通管家采纳,获得20
2秒前
搜集达人应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
飞飞飞发布了新的文献求助10
3秒前
zcy驳回了orixero应助
3秒前
3秒前
5秒前
5秒前
6秒前
量子星尘发布了新的文献求助10
6秒前
明亮雨真发布了新的文献求助10
7秒前
YTT发布了新的文献求助10
7秒前
天天快乐应助modesty采纳,获得10
8秒前
土亢土亢土发布了新的文献求助150
9秒前
10秒前
天外来客完成签到,获得积分10
12秒前
晨曦发布了新的文献求助20
14秒前
典雅的惊蛰完成签到,获得积分10
14秒前
共享精神应助tingting采纳,获得10
15秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
ALUMINUM STANDARDS AND DATA 500
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3665569
求助须知:如何正确求助?哪些是违规求助? 3224872
关于积分的说明 9760129
捐赠科研通 2934794
什么是DOI,文献DOI怎么找? 1607205
邀请新用户注册赠送积分活动 759080
科研通“疑难数据库(出版商)”最低求助积分说明 735101