Predicting Microvascular Invasion in Hepatocellular Carcinoma Using CT-based Radiomics Model

医学 无线电技术 肝细胞癌 接收机工作特性 逻辑回归 放射科 队列 回顾性队列研究 试验装置 内科学 肿瘤科 人工智能 计算机科学
作者
Tianyi Xia,Zheng-hao Zhou,Xiangpan Meng,Jun‐hao Zha,Yu Qian,Wei-lang Wang,Yang Song,Yuancheng Wang,Tianyu Tang,Jun Xu,Tao Zhang,Xueying Long,Yun Liang,Wenbo Xiao,Shenghong Ju
出处
期刊:Radiology [Radiological Society of North America]
卷期号:307 (4) 被引量:84
标识
DOI:10.1148/radiol.222729
摘要

Background Prediction of microvascular invasion (MVI) may help determine treatment strategies for hepatocellular carcinoma (HCC). Purpose To develop a radiomics approach for predicting MVI status based on preoperative multiphase CT images and to identify MVI-associated differentially expressed genes. Materials and Methods Patients with pathologically proven HCC from May 2012 to September 2020 were retrospectively included from four medical centers. Radiomics features were extracted from tumors and peritumor regions on preoperative registration or subtraction CT images. In the training set, these features were used to build five radiomics models via logistic regression after feature reduction. The models were tested using internal and external test sets against a pathologic reference standard to calculate area under the receiver operating characteristic curve (AUC). The optimal AUC radiomics model and clinical-radiologic characteristics were combined to build the hybrid model. The log-rank test was used in the outcome cohort (Kunming center) to analyze early recurrence-free survival and overall survival based on high versus low model-derived score. RNA sequencing data from The Cancer Image Archive were used for gene expression analysis. Results A total of 773 patients (median age, 59 years; IQR, 49–64 years; 633 men) were divided into the training set (n = 334), internal test set (n = 142), external test set (n = 141), outcome cohort (n = 121), and RNA sequencing analysis set (n = 35). The AUCs from the radiomics and hybrid models, respectively, were 0.76 and 0.86 for the internal test set and 0.72 and 0.84 for the external test set. Early recurrence-free survival (P < .01) and overall survival (P < .007) can be categorized using the hybrid model. Differentially expressed genes in patients with findings positive for MVI were involved in glucose metabolism. Conclusion The hybrid model showed the best performance in prediction of MVI. © RSNA, 2023 Supplemental material is available for this article. See also the editorial by Summers in this issue.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
甜蜜晓绿发布了新的文献求助10
1秒前
1秒前
Bruce发布了新的文献求助10
1秒前
2秒前
2秒前
MYhang完成签到,获得积分10
2秒前
wxd发布了新的文献求助10
4秒前
4秒前
哈哈发布了新的文献求助10
5秒前
5秒前
西哈哈发布了新的文献求助10
5秒前
科研通AI5应助lili采纳,获得10
5秒前
郑嘻嘻完成签到,获得积分10
5秒前
5秒前
FEI完成签到,获得积分20
5秒前
7秒前
英姑应助顺利的乐枫采纳,获得10
7秒前
7秒前
7秒前
8秒前
木子加y完成签到 ,获得积分10
9秒前
小蘑菇应助Sally采纳,获得10
9秒前
命运的X号完成签到,获得积分10
9秒前
yangyong发布了新的文献求助10
10秒前
10秒前
图图烤肉完成签到,获得积分10
11秒前
ajiaxi完成签到,获得积分10
11秒前
Bruce完成签到,获得积分10
12秒前
英俊的水彤完成签到 ,获得积分10
12秒前
刘金金完成签到,获得积分10
13秒前
13秒前
命运的X号发布了新的文献求助10
13秒前
14秒前
HJJHJH发布了新的文献求助10
14秒前
14秒前
爱听歌的电源完成签到,获得积分10
14秒前
善学以致用应助新的心跳采纳,获得10
14秒前
15秒前
陈梦雨发布了新的文献求助10
16秒前
复杂瑛完成签到,获得积分10
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794