局部异常因子
离群值
计算机科学
数据预处理
数据挖掘
异常检测
预处理器
缺少数据
变压器
模式识别(心理学)
人工智能
工程类
机器学习
电压
电气工程
作者
Dexu Zou,Yongjian Xiang,Tao Zhou,Qingjun Peng,Weiju Dai,Zhihu Hong,Yong Shi,Shan Wang,Jing Yin,Quan Hao
标识
DOI:10.1016/j.egyr.2023.04.094
摘要
The missing and abnormal data in power transformer operation and monitoring greatly affect the accuracy of fault diagnosis and thus threaten the stable operation of power systems. To conduct outlier detection and improve data quality for safety warning, this paper proposes a transformer operation data preprocessing method based on KNN (K-nearest neighbor) and LOF (local outlier factor) for power transformer operation data classification. Firstly, this paper analyzes the characteristics of transformer operation data. Secondly, the local reachable density of the input data is calculated by LOF algorithm. The local outlier factor score of the data is derived according to the local reachable density, and the abnormal data is output according to the abnormal score. Then, KNN algorithm is utilized to classify the relevant data around the abnormal value and missing value of the transformer. The data are filled or corrected according to the classification results. Thirdly, the elbow method is used to determine the optimal K value and cluster operation data by K-Means algorithm. Finally, the proposed method is applied and verified with real transformer operation data in case study. The results show the method can effectively detect and correct the abnormal and missing data, conduct transformer data cleaning and preprocessing and provide accurate and effective data samples for transformer fault diagnosis.
科研通智能强力驱动
Strongly Powered by AbleSci AI