Left atrial overload detection in ECG using frequency domain features with convolutional neural network

人工智能 卷积神经网络 深度学习 模式识别(心理学) 医学 特征提取 连续小波变换 小波变换 计算机科学 小波 离散小波变换
作者
Selçuk Küçükseymen,Serkan Uslu,Semir Özdemir
出处
期刊:European Heart Journal [Oxford University Press]
卷期号:43 (Supplement_2)
标识
DOI:10.1093/eurheartj/ehac544.427
摘要

Abstract Background/Introduction Volume and pressure alterations in the left atrium (LA) are utilized as important biomarkers due to their association with numerous cardiac pathologies. Because of the anatomical peculiarities of the LA, echocardiographic evaluation is quite challenging. There are many conducted studies to determine LA hemodynamic biomarkers using ECG signals, however, the low specificity has been seen as a common problem. Purpose Within the scope of this study, we aimed to develop a fully automatic artificial intelligence algorithm. Therefore, the frequency domain properties of the ECG signal were examined by wavelet transform and deep learning algorithm to detect the left atrial overload (LAO) from the ECG signal. We also compared the effectiveness of lead selection (Lead II and V1 Lead) to detect LAO. Methods Physionet-PTB-XL database was used for ECG inputs. 10 s ECG waveform of 403 healthy people and 352 LAO patients used for feature extraction after carefully filtering. Each signal was segmented to a 1.5 s epoch and in total 4530 ECG was used for training (70%) and test (30%) of deep learning algorithms. Two different deep learning models were developed for the automatic detection of LAO. In the first approach (1D convolutional neural network, 1D-CNN) segmented raw ECG was used, and in the second approach (2D convolutional neural network, 2D-CNN) each segmented ECG was transformed to scalograms with continuous wavelets transform. All models were tested for both leads. Results Our results show that frequency-domain features are highly capable to detect LAO compared to time-domain features and either Lead II and V1 Lead can be used for the detection of LAO. The success rate of 1D-CNN is 72% for Lead-II and 75% for V1 Lead while the success rate of 2D-CNN is 92% for both leads. Conclusions The most important limitation in the diagnosis of LAO by ECG is the low specificity. In this study, a model that eliminates this limitation has been developed by using the frequency characteristics of the ECG and artificial intelligence algorithms and tested with a large population. Considering its high success rate, 2D-CNN model has the potential to help the clinician by detecting the pathology with a cheaper, operator-independent method, and a short-term measurement. Funding Acknowledgement Type of funding sources: None.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
细心纸飞机完成签到,获得积分10
1秒前
Soleil完成签到 ,获得积分10
1秒前
量子星尘发布了新的文献求助10
1秒前
叛逆的xyz发布了新的文献求助10
2秒前
研友_VZG7GZ应助小宝爸爸采纳,获得10
2秒前
木木完成签到,获得积分10
2秒前
天天开心亞完成签到,获得积分10
3秒前
chuxin完成签到,获得积分10
3秒前
3秒前
3秒前
充电宝应助怡然如风采纳,获得10
4秒前
4秒前
4秒前
4秒前
动听的人英完成签到 ,获得积分10
5秒前
丘比特应助枫叶采纳,获得10
5秒前
彤彤完成签到 ,获得积分10
5秒前
5秒前
一一完成签到,获得积分10
5秒前
5秒前
思源应助F0xEr采纳,获得10
5秒前
深情安青应助jaya采纳,获得10
6秒前
mgr完成签到,获得积分10
6秒前
andykhoo2007完成签到,获得积分10
6秒前
Patrick完成签到,获得积分10
6秒前
johnnwick发布了新的文献求助10
6秒前
尼古拉耶维奇完成签到,获得积分10
7秒前
好事发生给好事发生的求助进行了留言
7秒前
orixero应助夏禾绿采纳,获得10
7秒前
为霄完成签到 ,获得积分10
7秒前
7秒前
7秒前
8秒前
大大发布了新的文献求助10
9秒前
wanci应助Just采纳,获得10
9秒前
9秒前
10秒前
醒醒完成签到,获得积分10
10秒前
言若景行完成签到,获得积分10
10秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
ALUMINUM STANDARDS AND DATA 500
Walter Gilbert: Selected Works 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3667174
求助须知:如何正确求助?哪些是违规求助? 3225880
关于积分的说明 9766248
捐赠科研通 2935755
什么是DOI,文献DOI怎么找? 1607911
邀请新用户注册赠送积分活动 759407
科研通“疑难数据库(出版商)”最低求助积分说明 735359