Situation Awareness of Energy Internet of Things in Smart City Based on Digital Twin: From Digitization to Informatization

计算机科学 云计算 大数据 数字化 兆字节 信息化 智慧城市 分布式计算 数据科学 数据挖掘 嵌入式系统 物联网 万维网 电信 操作系统
作者
Xing He,Qian Ai,Jingbo Wang,Fei Tao,Bo Pan,Robert C. Qiu,Bo Yang
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:10 (9): 7439-7458 被引量:28
标识
DOI:10.1109/jiot.2022.3203823
摘要

Rapid growth of diversity, uncertainty, and coupling effect of units in modern energy systems jointly challenges the traditional model-based situation awareness (SA) in Energy Internet of Things (EIoT). This work explores the digital twin of EIoT (EIoT-DT) and then provides a novel data-driven SA paradigm, named DT-SA, as a promising alternative. Based on the combination of the latest data technologies and machine learning algorithms, DT-SA transfers those stubborn SA challenges to digital space, and then addresses them by building a domain-specific and data-friendly digital twin (DT) model upon massive data. The established model can be quantitatively tested via iterative virtual–real interaction and, thus, be evaluated and updated through closed-loop feedback to improve its performance in the physical world. To this end, some engineering and scientific problems are raised: 1) virtual–real interaction mechanism relevant to resource flow and data flow; 2) unified modeling and analysis of heterogeneous spatial–temporal data; 3) DT configuration and evolution; and 4) domain-specific DT-SA characterization. To solve these problems, cloud-edge-terminal configuration, big data analytics (BDA), DT, and SA indicator systems are studied, respectively. Then, the random matrix theory (RMT) and overarching DT-SA framework are designed as a roadmap. Besides, some potential applications and undergoing projects on the terminal, edge, or cloud are discussed, e.g., condition assessment of equipment, digital monitoring and diagnosis of the power grid network, and EIoT construction in the smart city. Finally, some perspectives and recommendations are proposed in conclusion for future research. This research can be regarded as an efficient handbook for both energy engineering and data science, which may benefit enterprise digitization, smart city, etc.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
华仔应助鳗鱼凡波采纳,获得10
1秒前
踏实的翠绿应助千图采纳,获得20
2秒前
隐形曼青应助波波玛奇朵采纳,获得10
2秒前
昰昱完成签到,获得积分10
3秒前
3秒前
Ava应助地震学牛马采纳,获得30
3秒前
如意的新梅完成签到,获得积分10
4秒前
yy关闭了yy文献求助
4秒前
Yan发布了新的文献求助10
5秒前
zz发布了新的文献求助10
5秒前
豆豆完成签到,获得积分20
6秒前
wu完成签到,获得积分10
8秒前
栖梧发布了新的文献求助10
8秒前
一煽情完成签到,获得积分10
9秒前
ss应助1234567采纳,获得10
9秒前
9秒前
orixero应助笨笨采纳,获得10
9秒前
十三发布了新的文献求助10
12秒前
wu发布了新的文献求助10
14秒前
15秒前
whd完成签到 ,获得积分20
15秒前
我是老大应助zz采纳,获得10
16秒前
17秒前
养猫的路飞完成签到,获得积分10
17秒前
19秒前
动听沅发布了新的文献求助200
20秒前
豆豆关注了科研通微信公众号
21秒前
21秒前
Blummer发布了新的文献求助10
21秒前
21秒前
22秒前
hanyang965发布了新的文献求助10
22秒前
我是老大应助森气采纳,获得10
23秒前
lovelife完成签到,获得积分10
24秒前
笨笨发布了新的文献求助10
25秒前
光亮秋天完成签到 ,获得积分10
25秒前
尽平梅愿发布了新的文献求助10
26秒前
乐乐应助鳗鱼凡波采纳,获得10
27秒前
深情安青应助凶狠的曼卉采纳,获得10
27秒前
Owen应助albertxin采纳,获得10
28秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3310354
求助须知:如何正确求助?哪些是违规求助? 2943290
关于积分的说明 8513642
捐赠科研通 2618527
什么是DOI,文献DOI怎么找? 1431125
科研通“疑难数据库(出版商)”最低求助积分说明 664383
邀请新用户注册赠送积分活动 649580