Semi-supervised multi-scale attention-aware graph convolution network for intelligent fault diagnosis of machine under extremely-limited labeled samples

图形 模式识别(心理学) 计算机科学 分类器(UML) 标记数据 数据挖掘 人工智能 半监督学习 卷积(计算机科学) 比例(比率) 特征(语言学) 人工神经网络 理论计算机科学 物理 哲学 量子力学 语言学
作者
Zongliang Xie,Jinglong Chen,Yong Feng,Shuilong He
出处
期刊:Journal of Manufacturing Systems [Elsevier]
卷期号:64: 561-577 被引量:51
标识
DOI:10.1016/j.jmsy.2022.08.007
摘要

Labeled data are generally scarce in engineering practice, while data-driven methods fail to mine the correlations between samples to utilize the rich unlabeled data, so they cannot achieve satisfactory performance under limited labeled data. To address this problem, a semi-supervised multi-scale attention-aware graph convolution network (MSA-GCN) is proposed for fault diagnosis under extremely-limited labeled samples. First, available labeled data are transformed with unlabeled data into a graph via determining the k-nearest neighbors in frequency domain to construct the neighbor relations. To obtain the useful structural and feature information of unlabeled samples from different neighborhoods, multi-scale graph convolution is implemented to aggregate multi-scale information for labeled samples. Besides, attention mechanism is utilized and a novel adaptive feature fusing layer is designed to achieve cross-scale information fusion of different neighborhoods. With semi-supervised graph learning, the proposed method can fully utilize topological and feature information from unlabeled samples, resulting in a powerful classifier using only few labeled samples. The proposed method is fully verified on three bearing datasets, experimental results show that MSA-GCN can reach an identification accuracy of above 95 % with even as few as 5 labeled training samples each class, which demonstrates its effectiveness under low-label-ratio data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
周em12_发布了新的文献求助10
刚刚
东邪西毒加任我行完成签到,获得积分10
1秒前
1秒前
1秒前
搜集达人应助细腻含羞草采纳,获得10
3秒前
歪歪关注了科研通微信公众号
4秒前
4秒前
4秒前
无花果应助幸福台灯采纳,获得10
6秒前
灵兰QAQ完成签到,获得积分10
6秒前
戏谑发布了新的文献求助10
6秒前
LW90完成签到,获得积分10
6秒前
Akim应助roro熊采纳,获得10
6秒前
范范发布了新的文献求助30
7秒前
Zp发布了新的文献求助10
8秒前
8秒前
su完成签到,获得积分20
9秒前
10秒前
且放青山远完成签到,获得积分10
12秒前
和谐耳机完成签到 ,获得积分10
14秒前
明理慕灵应助失眠幼珊采纳,获得10
14秒前
星落枝头完成签到,获得积分10
15秒前
16秒前
牙ya发布了新的文献求助10
16秒前
默默的XJ完成签到,获得积分10
17秒前
17秒前
英俊的铭应助michael采纳,获得10
19秒前
领导范儿应助星落枝头采纳,获得10
19秒前
幸福台灯发布了新的文献求助10
19秒前
younghippo发布了新的文献求助10
21秒前
23秒前
23秒前
24秒前
浮游应助彼得大帝采纳,获得10
24秒前
Zp发布了新的文献求助10
26秒前
。。。完成签到,获得积分10
26秒前
27秒前
Tingting完成签到 ,获得积分10
27秒前
wwho_O完成签到 ,获得积分10
27秒前
飞阳完成签到,获得积分10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5565622
求助须知:如何正确求助?哪些是违规求助? 4650680
关于积分的说明 14692351
捐赠科研通 4592670
什么是DOI,文献DOI怎么找? 2519689
邀请新用户注册赠送积分活动 1492102
关于科研通互助平台的介绍 1463281