Semi-supervised multi-scale attention-aware graph convolution network for intelligent fault diagnosis of machine under extremely-limited labeled samples

图形 模式识别(心理学) 计算机科学 分类器(UML) 标记数据 数据挖掘 人工智能 半监督学习 卷积(计算机科学) 比例(比率) 特征(语言学) 人工神经网络 理论计算机科学 物理 哲学 量子力学 语言学
作者
Zongliang Xie,Jinglong Chen,Yong Feng,Shuilong He
出处
期刊:Journal of Manufacturing Systems [Elsevier]
卷期号:64: 561-577 被引量:51
标识
DOI:10.1016/j.jmsy.2022.08.007
摘要

Labeled data are generally scarce in engineering practice, while data-driven methods fail to mine the correlations between samples to utilize the rich unlabeled data, so they cannot achieve satisfactory performance under limited labeled data. To address this problem, a semi-supervised multi-scale attention-aware graph convolution network (MSA-GCN) is proposed for fault diagnosis under extremely-limited labeled samples. First, available labeled data are transformed with unlabeled data into a graph via determining the k-nearest neighbors in frequency domain to construct the neighbor relations. To obtain the useful structural and feature information of unlabeled samples from different neighborhoods, multi-scale graph convolution is implemented to aggregate multi-scale information for labeled samples. Besides, attention mechanism is utilized and a novel adaptive feature fusing layer is designed to achieve cross-scale information fusion of different neighborhoods. With semi-supervised graph learning, the proposed method can fully utilize topological and feature information from unlabeled samples, resulting in a powerful classifier using only few labeled samples. The proposed method is fully verified on three bearing datasets, experimental results show that MSA-GCN can reach an identification accuracy of above 95 % with even as few as 5 labeled training samples each class, which demonstrates its effectiveness under low-label-ratio data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
y1439938345发布了新的文献求助10
1秒前
1秒前
cloud发布了新的文献求助10
2秒前
2秒前
慕青应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
传奇3应助科研通管家采纳,获得10
3秒前
3秒前
量子星尘发布了新的文献求助30
3秒前
慕青应助科研通管家采纳,获得10
3秒前
3秒前
香蕉觅云应助科研通管家采纳,获得10
3秒前
3秒前
传奇3应助科研通管家采纳,获得10
3秒前
3秒前
Orange应助科研通管家采纳,获得10
3秒前
3秒前
香蕉觅云应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
Orange应助科研通管家采纳,获得10
3秒前
4秒前
4秒前
彭于晏应助科研通管家采纳,获得50
4秒前
4秒前
4秒前
4秒前
小蘑菇应助内向的跳跳糖采纳,获得10
4秒前
CodeCraft应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
orixero应助科研通管家采纳,获得10
4秒前
CodeCraft应助科研通管家采纳,获得10
4秒前
orixero应助科研通管家采纳,获得10
4秒前
丘比特应助科研通管家采纳,获得10
4秒前
BowieHuang应助科研通管家采纳,获得10
4秒前
脑洞疼应助科研通管家采纳,获得10
4秒前
乐乐应助科研通管家采纳,获得10
5秒前
桐桐应助科研通管家采纳,获得20
5秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5736061
求助须知:如何正确求助?哪些是违规求助? 5364012
关于积分的说明 15332114
捐赠科研通 4880090
什么是DOI,文献DOI怎么找? 2622504
邀请新用户注册赠送积分活动 1571528
关于科研通互助平台的介绍 1528348