已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Semi-supervised multi-scale attention-aware graph convolution network for intelligent fault diagnosis of machine under extremely-limited labeled samples

图形 模式识别(心理学) 计算机科学 分类器(UML) 标记数据 数据挖掘 人工智能 半监督学习 卷积(计算机科学) 比例(比率) 特征(语言学) 人工神经网络 理论计算机科学 物理 哲学 量子力学 语言学
作者
Zongliang Xie,Jinglong Chen,Yong Feng,Shuilong He
出处
期刊:Journal of Manufacturing Systems [Elsevier BV]
卷期号:64: 561-577 被引量:51
标识
DOI:10.1016/j.jmsy.2022.08.007
摘要

Labeled data are generally scarce in engineering practice, while data-driven methods fail to mine the correlations between samples to utilize the rich unlabeled data, so they cannot achieve satisfactory performance under limited labeled data. To address this problem, a semi-supervised multi-scale attention-aware graph convolution network (MSA-GCN) is proposed for fault diagnosis under extremely-limited labeled samples. First, available labeled data are transformed with unlabeled data into a graph via determining the k-nearest neighbors in frequency domain to construct the neighbor relations. To obtain the useful structural and feature information of unlabeled samples from different neighborhoods, multi-scale graph convolution is implemented to aggregate multi-scale information for labeled samples. Besides, attention mechanism is utilized and a novel adaptive feature fusing layer is designed to achieve cross-scale information fusion of different neighborhoods. With semi-supervised graph learning, the proposed method can fully utilize topological and feature information from unlabeled samples, resulting in a powerful classifier using only few labeled samples. The proposed method is fully verified on three bearing datasets, experimental results show that MSA-GCN can reach an identification accuracy of above 95 % with even as few as 5 labeled training samples each class, which demonstrates its effectiveness under low-label-ratio data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
深情安青应助wsx采纳,获得10
1秒前
睁正正发布了新的文献求助10
2秒前
零零完成签到,获得积分10
2秒前
科研专家发布了新的文献求助10
2秒前
wanci应助聚首采纳,获得10
2秒前
2秒前
英俊的铭应助现实的沛凝采纳,获得10
3秒前
爱科研的牛马完成签到 ,获得积分10
3秒前
Lucas应助ying采纳,获得10
3秒前
李玉坤完成签到,获得积分20
3秒前
3秒前
李爱国应助611采纳,获得10
4秒前
6秒前
小南发布了新的文献求助10
6秒前
辰叶发布了新的文献求助10
6秒前
深情安青应助嘟嘟噜采纳,获得10
6秒前
微课发布了新的文献求助10
7秒前
DRDOC发布了新的文献求助10
8秒前
8秒前
赘婿应助半_采纳,获得10
8秒前
科研通AI6应助认真的潇洒采纳,获得10
8秒前
吴瑜洁完成签到,获得积分10
8秒前
爆米花应助hangzi采纳,获得10
9秒前
蒋芳华发布了新的文献求助30
9秒前
9秒前
9秒前
11秒前
11秒前
威武忆山发布了新的文献求助10
12秒前
13秒前
科研通AI5应助闹闹采纳,获得10
14秒前
辰叶完成签到,获得积分10
15秒前
17秒前
FashionBoy应助kazewwk采纳,获得10
17秒前
17秒前
17秒前
17秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
A Treatise on the Mathematical Theory of Elasticity 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5252574
求助须知:如何正确求助?哪些是违规求助? 4416240
关于积分的说明 13749094
捐赠科研通 4288229
什么是DOI,文献DOI怎么找? 2352816
邀请新用户注册赠送积分活动 1349652
关于科研通互助平台的介绍 1309179