Asymmetric Cross-Attention Hierarchical Network Based on CNN and Transformer for Bitemporal Remote Sensing Images Change Detection

计算机科学 变压器 卷积神经网络 人工智能 计算复杂性理论 特征提取 模式识别(心理学) 机器学习 算法 电压 工程类 电气工程
作者
Xiaofeng Zhang,Shuli Cheng,Liejun Wang,Haojin Li
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-15 被引量:66
标识
DOI:10.1109/tgrs.2023.3245674
摘要

As an important task in the field of remote sensing (RS) image processing, RS image change detection (CD) has made significant advances through the use of convolutional neural networks (CNNs). The transformer has recently been introduced into the field of CD due to its excellent global perception capabilities. Some works have attempted to combine CNN and transformer to jointly harvest local-global features; however, these works have not paid much attention to the interaction between the features extracted by both. Also, the use of the transformer has resulted in significant resource consumption. In this article, we propose the Asymmetric Cross-attention Hierarchical Network (ACAHNet) by combining CNN and transformer in a series-parallel manner. The proposed Asymmetric Multiheaded Cross Attention (AMCA) module reduces the quadratic computational complexity of the transformer to linear, and the module enhances the interaction between features extracted from the CNN and the transformer. Different from the early and late fusion strategies employed in previous work, the effectiveness of the mid-term fusion strategy employed by ACAHNet shows a new choice of timing for feature fusion in the CD task. Our experiments on the proposed method on three public datasets show that our network has a better performance in terms of effectiveness and computational resource consumption compared to other comparative methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hcc完成签到 ,获得积分10
刚刚
科研通AI5应助快乐的土土采纳,获得10
刚刚
jinzejin完成签到,获得积分10
1秒前
皮卡丘完成签到,获得积分10
2秒前
Majician发布了新的文献求助10
2秒前
秀丽高跟鞋完成签到,获得积分10
3秒前
4秒前
lynn完成签到,获得积分10
4秒前
无花果应助aga采纳,获得10
5秒前
fsdgbg发布了新的文献求助10
5秒前
6秒前
彭于晏应助找文献呢采纳,获得10
6秒前
所所应助星星之火采纳,获得10
6秒前
骤雨时晴完成签到 ,获得积分10
7秒前
7秒前
pcr163应助的订单采纳,获得150
8秒前
科研通AI5应助的订单采纳,获得10
8秒前
Ava应助孤独的问凝采纳,获得10
9秒前
lynn发布了新的文献求助10
10秒前
科研通AI5应助奥利奥采纳,获得10
11秒前
小幸运完成签到,获得积分10
11秒前
11秒前
方易烟发布了新的文献求助10
11秒前
上官若男应助fsdgbg采纳,获得10
12秒前
Zac应助mylian采纳,获得30
12秒前
12秒前
lucky完成签到,获得积分10
13秒前
13秒前
Mmmm完成签到,获得积分10
14秒前
enio完成签到,获得积分10
15秒前
Mona完成签到,获得积分10
16秒前
cxq发布了新的文献求助10
16秒前
16秒前
17秒前
yuanyuan发布了新的文献求助10
18秒前
mmd发布了新的文献求助10
18秒前
跑在颖完成签到,获得积分10
18秒前
21秒前
玄音完成签到,获得积分10
21秒前
22秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
On the identity and nomenclature of a climbing bamboo Melocalamus macclellandii 610
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3557656
求助须知:如何正确求助?哪些是违规求助? 3132706
关于积分的说明 9398807
捐赠科研通 2832886
什么是DOI,文献DOI怎么找? 1557110
邀请新用户注册赠送积分活动 727082
科研通“疑难数据库(出版商)”最低求助积分说明 716189