PoetryBERT: Pre-training with Sememe Knowledge for Classical Chinese Poetry

诗歌 计算机科学 文言文 中国诗歌 构造(python库) 中国古典诗歌 主题(计算) 人工智能 文学类 自然语言处理 语言学 哲学 艺术 万维网 程序设计语言
作者
Jiaqi Zhao,Ting Bai,Yuting Wei,Bin Wu
出处
期刊:Communications in computer and information science 卷期号:: 369-384 被引量:5
标识
DOI:10.1007/978-981-19-8991-9_26
摘要

Classical Chinese poetry has a history of thousands of years and is a precious cultural heritage of humankind. Compared with the modern Chinese corpus, it is irrecoverable and specially organized, making it difficult to be learned by existing pre-trained language models. Besides, with the thousands of years of development, many words in classical Chinese poetry have changed their meanings or been out of use today, which further limiting the capability of existing pre-trained models to learn the semantics of classical Chinese poetry. To address these challenges, we construct a large-scale sememe knowledge graph of classical Chinese Poetry (SKG-Poetry), which connects the vocabularies in classical Chinese poetry and modern Chinese. By extracting the sememe knowledge from classical Chinese poetry, our model PoetryBERT not only enlarges the irrecoverable pre-training corpus but also enriches the semantics of the vocabularies in classical Chinese poetry, which enables PoetryBERT to be successfully used in downstream tasks. Specifically, we evaluate our model in two tasks in the field of Chinese classical poetry, which are poetry theme classification and poetry-modern Chinese translation. Extensive experiments are conducted on the two tasks to show the effectiveness of sememe knowledge based pre-training model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhangxia发布了新的文献求助10
1秒前
1秒前
decade发布了新的文献求助10
2秒前
2秒前
wilaken发布了新的文献求助10
2秒前
2秒前
2秒前
vkl完成签到 ,获得积分10
2秒前
华仔应助Deer采纳,获得10
2秒前
3秒前
3秒前
輝23完成签到,获得积分20
4秒前
4秒前
华仔应助敬老院N号采纳,获得10
5秒前
Jeannie应助敬老院N号采纳,获得10
5秒前
Jeannie应助敬老院N号采纳,获得10
5秒前
燕熙完成签到,获得积分10
5秒前
Jeannie应助敬老院N号采纳,获得10
5秒前
夕夕成玦发布了新的文献求助20
6秒前
生动谷蓝发布了新的文献求助10
6秒前
靓丽千筹完成签到,获得积分10
7秒前
7秒前
所所应助对啊采纳,获得10
7秒前
8秒前
今天学习了吗完成签到,获得积分10
8秒前
8秒前
贝儿完成签到,获得积分10
9秒前
茄子完成签到,获得积分10
9秒前
lokia发布了新的文献求助10
10秒前
Once发布了新的文献求助30
10秒前
zwq关闭了zwq文献求助
10秒前
11秒前
怡宝完成签到,获得积分20
11秒前
深情安青应助靓丽千筹采纳,获得10
11秒前
123完成签到 ,获得积分10
11秒前
11秒前
wyy1990711发布了新的文献求助10
12秒前
张医生发布了新的文献求助10
12秒前
阿伟发布了新的文献求助10
12秒前
英俊的铭应助decade采纳,获得10
13秒前
高分求助中
좌파는 어떻게 좌파가 됐나:한국 급진노동운동의 형성과 궤적 2500
Sustainability in Tides Chemistry 1500
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
CLSI EP47 Evaluation of Reagent Carryover Effects on Test Results, 1st Edition 800
Threaded Harmony: A Sustainable Approach to Fashion 799
Livre et militantisme : La Cité éditeur 1958-1967 500
Retention of title in secured transactions law from a creditor's perspective: A comparative analysis of selected (non-)functional approaches 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3054545
求助须知:如何正确求助?哪些是违规求助? 2711512
关于积分的说明 7426610
捐赠科研通 2356104
什么是DOI,文献DOI怎么找? 1247642
科研通“疑难数据库(出版商)”最低求助积分说明 606478
版权声明 596079