Utilizing machine learning techniques to predict the blood-brain barrier permeability of compounds detected using LCQTOF-MS in Malaysian Kelulut honey

化学信息学 生物信息学 随机森林 分子描述符 化学 血脑屏障 色谱法 四极飞行时间 质谱法 机器学习 中枢神经系统 数量结构-活动关系 计算机科学 医学 生物化学 串联质谱法 立体化学 计算化学 内分泌学 基因
作者
Raihana Edros,T.W. Feng,Ruihai Dong
出处
期刊:Sar and Qsar in Environmental Research [Informa]
卷期号:34 (6): 475-500
标识
DOI:10.1080/1062936x.2023.2230868
摘要

Current in silico modelling techniques, such as molecular dynamics, typically focus on compounds with the highest concentration from chromatographic analyses for bioactivity screening. Consequently, they reduce the need for labour-intensive in vitro studies but limit the utilization of extensive chromatographic data and molecular diversity for compound classification. Compound permeability across the blood–brain barrier (BBB) is a key concern in central nervous system (CNS) drug development, and this limitation can be addressed by applying cheminformatics with codeless machine learning (ML). Among the four models developed in this study, the Random Forest (RF) algorithm with the most robust performance in both internal and external validation was selected for model construction, with an accuracy (ACC) of 87.5% and 86.9% and area under the curve (AUC) of 0.907 and 0.726, respectively. The RF model was deployed to classify 285 compounds detected using liquid chromatography quadrupole time-of-flight mass spectrometry (LCQTOF-MS) in Kelulut honey; of which, 140 compounds were screened with 94 descriptors. Seventeen compounds were predicted to permeate the BBB, revealing their potential as drugs for treating neurodegenerative diseases. Our results highlight the importance of employing ML pattern recognition to identify compounds with neuroprotective potential from the entire pool of chromatographic data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
shi hui应助冬瓜炖排骨采纳,获得10
刚刚
1秒前
dyh6802发布了新的文献求助10
1秒前
冷静雅青发布了新的文献求助10
1秒前
CipherSage应助猪猪hero采纳,获得10
2秒前
领导范儿应助不凡采纳,获得30
2秒前
顾矜应助坚定的亦绿采纳,获得10
3秒前
3秒前
yu完成签到,获得积分10
3秒前
Chris完成签到,获得积分10
4秒前
cookie发布了新的文献求助10
5秒前
胖仔完成签到,获得积分10
5秒前
Chan0501完成签到,获得积分10
5秒前
6秒前
7秒前
7秒前
duxinyue发布了新的文献求助10
7秒前
汉堡转转转完成签到,获得积分10
8秒前
喵酱发布了新的文献求助30
8秒前
6666完成签到,获得积分10
8秒前
研友_VZG7GZ应助灵巧荆采纳,获得10
9秒前
wjn完成签到,获得积分10
9秒前
10秒前
竹子完成签到,获得积分10
10秒前
MAKEYF完成签到 ,获得积分10
10秒前
11秒前
Owen应助猪猪hero采纳,获得10
11秒前
12秒前
CipherSage应助海棠yiyi采纳,获得50
13秒前
Khr1stINK发布了新的文献求助10
13秒前
13秒前
脑洞疼应助卡卡采纳,获得10
13秒前
13秒前
Rrr发布了新的文献求助10
14秒前
科研通AI5应助zmy采纳,获得10
15秒前
William鉴哲发布了新的文献求助10
15秒前
情怀应助只道寻常采纳,获得10
16秒前
16秒前
cyy完成签到,获得积分20
16秒前
orixero应助小庄采纳,获得10
17秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794