Utilizing machine learning techniques to predict the blood-brain barrier permeability of compounds detected using LCQTOF-MS in Malaysian Kelulut honey

化学信息学 生物信息学 随机森林 分子描述符 化学 血脑屏障 色谱法 四极飞行时间 质谱法 机器学习 中枢神经系统 数量结构-活动关系 计算机科学 医学 生物化学 串联质谱法 立体化学 计算化学 内分泌学 基因
作者
Raihana Edros,T.W. Feng,Ruihai Dong
出处
期刊:Sar and Qsar in Environmental Research [Taylor & Francis]
卷期号:34 (6): 475-500
标识
DOI:10.1080/1062936x.2023.2230868
摘要

Current in silico modelling techniques, such as molecular dynamics, typically focus on compounds with the highest concentration from chromatographic analyses for bioactivity screening. Consequently, they reduce the need for labour-intensive in vitro studies but limit the utilization of extensive chromatographic data and molecular diversity for compound classification. Compound permeability across the blood–brain barrier (BBB) is a key concern in central nervous system (CNS) drug development, and this limitation can be addressed by applying cheminformatics with codeless machine learning (ML). Among the four models developed in this study, the Random Forest (RF) algorithm with the most robust performance in both internal and external validation was selected for model construction, with an accuracy (ACC) of 87.5% and 86.9% and area under the curve (AUC) of 0.907 and 0.726, respectively. The RF model was deployed to classify 285 compounds detected using liquid chromatography quadrupole time-of-flight mass spectrometry (LCQTOF-MS) in Kelulut honey; of which, 140 compounds were screened with 94 descriptors. Seventeen compounds were predicted to permeate the BBB, revealing their potential as drugs for treating neurodegenerative diseases. Our results highlight the importance of employing ML pattern recognition to identify compounds with neuroprotective potential from the entire pool of chromatographic data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
晚霞不晚完成签到,获得积分10
刚刚
mobula完成签到,获得积分20
刚刚
于生有你发布了新的文献求助10
刚刚
null驳回了user应助
刚刚
好运连连完成签到,获得积分10
1秒前
1秒前
zjq发布了新的文献求助10
1秒前
Owen应助叶文轩采纳,获得10
1秒前
自然的代亦完成签到,获得积分10
1秒前
2秒前
2秒前
小胡发布了新的文献求助10
2秒前
2秒前
Cc发布了新的文献求助10
2秒前
3秒前
从容追命发布了新的文献求助30
3秒前
淡定发布了新的文献求助10
3秒前
李健应助justin采纳,获得10
4秒前
zero_two完成签到,获得积分10
4秒前
4秒前
逆时针完成签到,获得积分10
5秒前
5秒前
5秒前
7秒前
热心子轩完成签到,获得积分10
7秒前
Y奥完成签到,获得积分10
7秒前
XHH1994发布了新的文献求助10
7秒前
齐小妮发布了新的文献求助10
7秒前
7秒前
7秒前
8秒前
隐形曼青应助柏林肥鱼卷采纳,获得10
8秒前
8秒前
Akim应助47采纳,获得10
8秒前
思源应助风清扬采纳,获得10
9秒前
量子星尘发布了新的文献求助50
9秒前
猪丢了完成签到 ,获得积分10
9秒前
9秒前
9秒前
牧之发布了新的文献求助10
9秒前
高分求助中
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603996
求助须知:如何正确求助?哪些是违规求助? 4012488
关于积分的说明 12423933
捐赠科研通 3693069
什么是DOI,文献DOI怎么找? 2036050
邀请新用户注册赠送积分活动 1069178
科研通“疑难数据库(出版商)”最低求助积分说明 953646