Spectral-guided ensemble modelling for soil spectroscopic prediction

随机森林 预测建模 稳健性(进化) 偏最小二乘回归 计算机科学 集合预报 土壤科学 集成学习 均方预测误差 环境科学 数据挖掘 机器学习 化学 生物化学 基因
作者
Songchao Chen,Jie Xue,Zhou Shi
出处
期刊:Geoderma [Elsevier]
卷期号:437: 116594-116594 被引量:7
标识
DOI:10.1016/j.geoderma.2023.116594
摘要

Ensemble modelling (EM) has been increasingly used in soil information prediction by spectroscopic techniques to enhance model robustness and improve model performance. This approach is usually implemented by fitting a new model using the predictions from several predictive models, and then outputting new predictions. Since the prediction error associated with each model are randomly distributed, the useful information derived from the predictions of each predictive model is somewhat limited. In this study, we proposed a new approach, namely spectral-guided ensemble modelling (S-GEM), to improve soil spectroscopic prediction by including spectral information in EM. Taking LUCAS Soil 2009 data as an example, our results showed that S-GEM performed better than EM using Granger-Ramanathan (a gain of R2 of 0.04–0.05) as well as the best classic model including partial least squares regression, Cubist and random forest (a gain of R2 of 0.08–0.09) for predicting soil organic carbon, clay and pH using vis-NIR spectra. Therefore, we suggest that S-GEM has a high potential to improve soil spectroscopic prediction over the conventional EM, and therefore provides more accurate soil information for monitoring soil status and changes over space and time using digital soil mapping. In addition, the idea of including auxiliary information in EM can also be extended outside of pedometrical applications for improving predictive ability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
碱性沉默完成签到,获得积分10
刚刚
晓晖完成签到,获得积分10
1秒前
1秒前
www完成签到,获得积分10
1秒前
俏皮的悟空完成签到,获得积分10
2秒前
DTT发布了新的文献求助10
3秒前
jiayueiyang发布了新的文献求助10
3秒前
研友_VZG7GZ应助lynn_zhang采纳,获得10
3秒前
3秒前
4秒前
星辰大海应助公西元柏采纳,获得10
4秒前
orixero应助Yangpc采纳,获得10
4秒前
5秒前
5秒前
5秒前
小猴同学完成签到 ,获得积分10
5秒前
123完成签到,获得积分10
6秒前
AaronW发布了新的文献求助10
6秒前
奋斗的夏柳完成签到 ,获得积分10
7秒前
小猫咪发布了新的文献求助200
7秒前
sunyexuan发布了新的文献求助10
7秒前
鲸鱼姐姐完成签到 ,获得积分10
8秒前
8秒前
alho完成签到 ,获得积分10
8秒前
仄兀发布了新的文献求助10
8秒前
8秒前
Rrrr完成签到,获得积分10
9秒前
9秒前
Tan完成签到 ,获得积分10
9秒前
晚风完成签到,获得积分20
10秒前
10秒前
情怀应助平淡的蜻蜓采纳,获得10
10秒前
复杂觅海完成签到 ,获得积分10
10秒前
JUSTs0so发布了新的文献求助10
11秒前
12秒前
12秒前
毛慢慢发布了新的文献求助30
12秒前
123完成签到,获得积分10
12秒前
DTT完成签到,获得积分10
13秒前
SciGPT应助单薄白薇采纳,获得10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762