Spectral-guided ensemble modelling for soil spectroscopic prediction

随机森林 预测建模 稳健性(进化) 偏最小二乘回归 计算机科学 集合预报 土壤科学 集成学习 均方预测误差 环境科学 数据挖掘 机器学习 化学 生物化学 基因
作者
Songchao Chen,Jie Xue,Zhou Shi
出处
期刊:Geoderma [Elsevier]
卷期号:437: 116594-116594 被引量:6
标识
DOI:10.1016/j.geoderma.2023.116594
摘要

Ensemble modelling (EM) has been increasingly used in soil information prediction by spectroscopic techniques to enhance model robustness and improve model performance. This approach is usually implemented by fitting a new model using the predictions from several predictive models, and then outputting new predictions. Since the prediction error associated with each model are randomly distributed, the useful information derived from the predictions of each predictive model is somewhat limited. In this study, we proposed a new approach, namely spectral-guided ensemble modelling (S-GEM), to improve soil spectroscopic prediction by including spectral information in EM. Taking LUCAS Soil 2009 data as an example, our results showed that S-GEM performed better than EM using Granger-Ramanathan (a gain of R2 of 0.04–0.05) as well as the best classic model including partial least squares regression, Cubist and random forest (a gain of R2 of 0.08–0.09) for predicting soil organic carbon, clay and pH using vis-NIR spectra. Therefore, we suggest that S-GEM has a high potential to improve soil spectroscopic prediction over the conventional EM, and therefore provides more accurate soil information for monitoring soil status and changes over space and time using digital soil mapping. In addition, the idea of including auxiliary information in EM can also be extended outside of pedometrical applications for improving predictive ability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NexusExplorer应助无聊的人采纳,获得10
1秒前
未央发布了新的文献求助10
1秒前
烟花应助Bonnienuit采纳,获得30
2秒前
哈哈哈发布了新的文献求助10
2秒前
3秒前
我是老大应助活泼的电脑采纳,获得10
6秒前
在水一方应助小兔子采纳,获得10
6秒前
传奇3应助guojingjing采纳,获得10
7秒前
哈哈哈完成签到,获得积分10
7秒前
7秒前
拾遗就是我完成签到,获得积分10
8秒前
粗暴的遥完成签到,获得积分20
8秒前
管道工关注了科研通微信公众号
9秒前
汉堡包应助懵懂采纳,获得10
12秒前
小笼包完成签到,获得积分10
13秒前
脑洞疼应助sci采纳,获得10
14秒前
友好的不言完成签到,获得积分10
15秒前
16秒前
16秒前
18秒前
樊伟诚完成签到,获得积分10
18秒前
18秒前
Yangpc完成签到,获得积分10
19秒前
19秒前
十一应助zyrhahaha采纳,获得10
21秒前
小兔子发布了新的文献求助10
21秒前
kilig完成签到 ,获得积分10
21秒前
今后应助绵绵采纳,获得10
22秒前
23秒前
tuanzi完成签到 ,获得积分10
23秒前
852应助娇气的伟宸采纳,获得10
25秒前
Jinyi发布了新的文献求助10
25秒前
xjcy应助管道工采纳,获得10
27秒前
南望完成签到,获得积分10
29秒前
传奇3应助光亮向露采纳,获得10
30秒前
神说要有光完成签到 ,获得积分10
31秒前
31秒前
xjcy应助东郭雁梅采纳,获得10
34秒前
某宁发布了新的文献求助10
34秒前
wow发布了新的文献求助10
35秒前
高分求助中
Earth System Geophysics 1000
Co-opetition under Endogenous Bargaining Power 666
Studies on the inheritance of some characters in rice Oryza sativa L 600
Medicina di laboratorio. Logica e patologia clinica 600
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
Sarcolestes leedsi Lydekker, an ankylosaurian dinosaur from the Middle Jurassic of England 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3212011
求助须知:如何正确求助?哪些是违规求助? 2860865
关于积分的说明 8126364
捐赠科研通 2526752
什么是DOI,文献DOI怎么找? 1360566
科研通“疑难数据库(出版商)”最低求助积分说明 643243
邀请新用户注册赠送积分活动 615469