An Auto-Weighting Incremental Random Vector Functional Link Network for EEG-Based Driving Fatigue Detection

加权 脑电图 支持向量机 计算机科学 人工智能 特征(语言学) 人工神经网络 模式识别(心理学) 特征向量 随机森林 机器学习 心理学 哲学 放射科 精神科 医学 语言学
作者
Yikai Zhang,Ruiqi Guo,Yong Peng,Wanzeng Kong,Feiping Nie,Bao‐Liang Lu
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:71: 1-14 被引量:12
标识
DOI:10.1109/tim.2022.3216409
摘要

Recently, Electroencephalogram (EEG) has been receiving increasing attention in driving fatigue attention because it is generated by the neural activities of central nervous system and has been regarded as the gold standard to measure fatigue. However, most existing studies for EEG-based driving fatigue detection have some common limitations such as 1) using the batch learning mode and no incremental updating ability, 2) converting continuous fatigue indices into discrete levels which deviates far from the essence of fatigue detection, and 3) neglecting considering the different contributions of EEG feature dimensions in fatigue expression. To handle these problems, we propose an Auto-Weighting Incremental Random Vector Functional Link network (AWIRVFL) model for EEG-based driving fatigue detection, which simultaneously implements online regression prediction and incremental learning. Moreover, an auto-weighting variable is introduced to adaptively and quantitatively explore the importance of different feature dimensions. A novel optimization algorithm is proposed to solve the AWIRVFL objective function. Experiments were conducted on the SEED-VIG and sustained-attention driving task (SADT) data sets to validate the performance of AWIRVFL and the results demonstrated that AWIRVFL greatly outperforms the state-of-the-arts in terms of the two regression evaluation metrics, RMSE and MAPE. Moreover, the quantitative feature importance values are obtained.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
传奇3应助轻松煎饼采纳,获得10
1秒前
wjw发布了新的文献求助10
3秒前
热情大雁发布了新的文献求助10
4秒前
大可发布了新的文献求助10
4秒前
4秒前
CipherSage应助qy采纳,获得10
5秒前
5秒前
5秒前
子车语雪完成签到,获得积分20
5秒前
大模型应助柠静樨采纳,获得10
5秒前
5秒前
SciGPT应助门前大桥下采纳,获得10
6秒前
田様应助000采纳,获得10
6秒前
Starry发布了新的文献求助10
6秒前
小树完成签到 ,获得积分10
6秒前
Jarvis发布了新的文献求助10
6秒前
tuanzi发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
7秒前
黄先生完成签到,获得积分10
8秒前
缓慢翠柏发布了新的文献求助10
8秒前
9秒前
好运常在发布了新的文献求助10
9秒前
9秒前
9秒前
10秒前
sk夏冰完成签到 ,获得积分10
10秒前
11秒前
wings发布了新的文献求助10
12秒前
lwg发布了新的文献求助10
12秒前
13秒前
13秒前
nonono完成签到,获得积分10
13秒前
77完成签到,获得积分10
13秒前
13秒前
13秒前
xxzzhh_student完成签到,获得积分10
15秒前
852应助小郑不过柱子采纳,获得10
16秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5711286
求助须知:如何正确求助?哪些是违规求助? 5202990
关于积分的说明 15263800
捐赠科研通 4863647
什么是DOI,文献DOI怎么找? 2610818
邀请新用户注册赠送积分活动 1561136
关于科研通互助平台的介绍 1518616