重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

An Auto-Weighting Incremental Random Vector Functional Link Network for EEG-Based Driving Fatigue Detection

加权 脑电图 支持向量机 计算机科学 人工智能 特征(语言学) 人工神经网络 模式识别(心理学) 特征向量 随机森林 机器学习 心理学 哲学 放射科 精神科 医学 语言学
作者
Yikai Zhang,Ruiqi Guo,Yong Peng,Wanzeng Kong,Feiping Nie,Bao‐Liang Lu
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:71: 1-14 被引量:12
标识
DOI:10.1109/tim.2022.3216409
摘要

Recently, Electroencephalogram (EEG) has been receiving increasing attention in driving fatigue attention because it is generated by the neural activities of central nervous system and has been regarded as the gold standard to measure fatigue. However, most existing studies for EEG-based driving fatigue detection have some common limitations such as 1) using the batch learning mode and no incremental updating ability, 2) converting continuous fatigue indices into discrete levels which deviates far from the essence of fatigue detection, and 3) neglecting considering the different contributions of EEG feature dimensions in fatigue expression. To handle these problems, we propose an Auto-Weighting Incremental Random Vector Functional Link network (AWIRVFL) model for EEG-based driving fatigue detection, which simultaneously implements online regression prediction and incremental learning. Moreover, an auto-weighting variable is introduced to adaptively and quantitatively explore the importance of different feature dimensions. A novel optimization algorithm is proposed to solve the AWIRVFL objective function. Experiments were conducted on the SEED-VIG and sustained-attention driving task (SADT) data sets to validate the performance of AWIRVFL and the results demonstrated that AWIRVFL greatly outperforms the state-of-the-arts in terms of the two regression evaluation metrics, RMSE and MAPE. Moreover, the quantitative feature importance values are obtained.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
善良诗珊完成签到,获得积分10
1秒前
布吉岛发布了新的文献求助10
1秒前
一碗晚月完成签到,获得积分10
1秒前
Morssax完成签到,获得积分10
3秒前
3秒前
浮游应助zhuzhu采纳,获得10
3秒前
稳重盼夏发布了新的文献求助10
4秒前
wanci应助碧蓝的往事采纳,获得10
4秒前
4秒前
4秒前
4秒前
疯子零零完成签到,获得积分10
5秒前
眯眯眼的语雪完成签到,获得积分10
5秒前
6秒前
WY完成签到,获得积分10
6秒前
STEAD完成签到,获得积分10
8秒前
DrPanda完成签到,获得积分10
8秒前
小太阳发布了新的文献求助10
8秒前
研友_VZG7GZ应助Penn采纳,获得10
8秒前
9秒前
无花果应助眯眯眼的语雪采纳,获得10
9秒前
卡卡罗特完成签到,获得积分10
9秒前
量子星尘发布了新的文献求助10
9秒前
9秒前
9秒前
aaaa完成签到,获得积分10
10秒前
12秒前
zhouyong完成签到,获得积分10
12秒前
浮游应助Literaturecome采纳,获得10
13秒前
masterwill发布了新的文献求助10
13秒前
lz发布了新的文献求助10
14秒前
15秒前
yafei完成签到 ,获得积分10
15秒前
dahua发布了新的文献求助30
15秒前
16秒前
16秒前
16秒前
16秒前
珂颜堂AI应助zq采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5465838
求助须知:如何正确求助?哪些是违规求助? 4570083
关于积分的说明 14322455
捐赠科研通 4496549
什么是DOI,文献DOI怎么找? 2463392
邀请新用户注册赠送积分活动 1452295
关于科研通互助平台的介绍 1427497