A lightweight SSV2-YOLO based model for detection of sugarcane aphids in unstructured natural environments

计算机科学 目标检测 人工智能 特征(语言学) 像素 模式识别(心理学) 功能(生物学) 生物 语言学 进化生物学 哲学
作者
Weiyue Xu,Tao Xu,J. Alex Thomasson,Wei Chen,Raghupathy Karthikeyan,Guangzhao Tian,Yeyin Shi,Changying Ji,Qiong Su
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:211: 107961-107961 被引量:15
标识
DOI:10.1016/j.compag.2023.107961
摘要

Accurate, rapid, and smart pest recognition and detection are important for crop protection and management. Existing deep learning-based pest detection algorithms often require high computing resources and computational memory. In addition, detection of small and high-density pests (e.g., sugarcane aphids (SCAs)) in unstructured natural environments still remains challenging due to the small target size, natural illumination, and background noises. Here, we developed a lightweight SSV2-YOLO (Stem-ShuffleNet V2-YOLOv5s) model based on YOLOv5s (You Only Look Once, version 5, small) for SCA detection by reconstructing the backbone network with Stem and ShuffleNet V2 and adjusting the neck network width. We further refactored the feature level, data augmentation method, and loss function to improve detection performance for small, high-density, and overlapping targets. The newly developed SSV2-YOLO model was trained and tested using a mobile phone SCA image dataset (n = 860) covering both uniform and unstructured natural environments. Compared with the original YOLOv5s, SSV2-YOLO significantly reduced model complexity, e.g., reduced parameter number (by 95.1%), model size (by 92.5%), and floating point of operations (by 81.6%), and showed increased detection speed (GPU by 31.6% and CPU by 81.8%) and improved accuracy (by 2.5%). SSV2-YOLO also outperformed the best state-of-the-art algorithms for SCA detection under severe adhesion and unstructured farmland conditions. We found 640 × 640 as the best image pixel resolution to improve model detection performance without affecting model size. Our study showed that SSV2-YOLO has clear advantages in terms of accuracy, efficiency, and lightweight, which can be potentially used for the automatic detection of SCAs on mobile devices. The evaluation code and dataset are available at https://github.com/weiyuexu/SCAs-SSV2-YOLO.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
galaxy发布了新的文献求助10
刚刚
1秒前
隐形的小蚂蚁完成签到 ,获得积分10
1秒前
2秒前
love完成签到,获得积分10
2秒前
十一一完成签到 ,获得积分10
2秒前
2秒前
3秒前
一条蛆完成签到 ,获得积分10
3秒前
要减肥筝发布了新的文献求助10
4秒前
4秒前
ding应助dd采纳,获得10
5秒前
wei jie发布了新的文献求助30
5秒前
zhangyu哥发布了新的文献求助10
5秒前
5秒前
6秒前
6秒前
卖粥的果完成签到 ,获得积分10
7秒前
7秒前
8秒前
小太阳发布了新的文献求助10
8秒前
8秒前
2211完成签到,获得积分10
9秒前
大个应助ying采纳,获得10
11秒前
heartbeat发布了新的文献求助10
11秒前
11秒前
13秒前
13秒前
13秒前
标致的土豆完成签到,获得积分20
13秒前
刻苦从阳完成签到,获得积分10
14秒前
Rita应助paulmichael采纳,获得20
15秒前
star完成签到,获得积分10
15秒前
16秒前
lucky发布了新的文献求助10
16秒前
蘑菇发布了新的文献求助10
16秒前
17秒前
dddd完成签到,获得积分20
17秒前
17秒前
Lucas应助氙气飘飘采纳,获得10
18秒前
高分求助中
All the Birds of the World 3000
General Equilibrium, Capital and Macroeconomics 1000
Weirder than Sci-fi: Speculative Practice in Art and Finance 960
IZELTABART TAPATANSINE 500
Introduction to Comparative Public Administration: Administrative Systems and Reforms in Europe: Second Edition 2nd Edition 300
Spontaneous closure of a dural arteriovenous malformation 300
GNSS Applications in Earth and Space Observations 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3724290
求助须知:如何正确求助?哪些是违规求助? 3269754
关于积分的说明 9962029
捐赠科研通 2984242
什么是DOI,文献DOI怎么找? 1637318
邀请新用户注册赠送积分活动 777442
科研通“疑难数据库(出版商)”最低求助积分说明 747032