硝基
电解质
材料科学
共价键
锂(药物)
共价有机骨架
电子受体
离子键合
接受者
相间
电子
阳极
枝晶(数学)
电子传输链
沉积(地质)
离子电导率
化学工程
电极
物理化学
离子
化学
有机化学
古生物学
几何学
烷基
沉积物
生物化学
凝聚态物理
数学
生物
量子力学
医学
内分泌学
工程类
物理
遗传学
作者
Yongxin Yang,Conghui Zhang,Genfu Zhao,Qi An,Zhiyuan Mei,Yongjiang Sun,Qijun Xu,Xiaofeng Wang,Hong Guo
标识
DOI:10.1002/aenm.202300725
摘要
Abstract The growth of disordered lithium dendrite and the notorious reaction between Li and electrolyte hamper the practical application of Li metal batteries (LMBs). Herein, an artificial solid electrolyte interphase (ASEI) constructed by a nitro‐functionalized covalent organic framework (NO 2 ‐COF) is designed to regulate Li + deposition and stable Li anodes. Strong electron‐withdrawing nitro groups can gather the surrounding electrons of connected monomer by the donor‐acceptor (D‐A) effect, thus regulating the electron structure of the covalent organic framework (COF) and constructing a specific cation‐oriented channel. The uniform Li + deposition and inhibition of Li dendrites are achieved under such a high‐selective Li + transportation channel and regulated surface electric charge. In addition, the nitro can also be reduced to NO 2 − and further react with Li to produce high ionic‐conductivity Li 3 N and LiN x O y during the charging/discharging, which contributes to the migration of Li + . As a result, NO 2 ‐COF‐modified symmetrical batteries realize an ultra‐long cycling life of more than 6000 h under a current density of 5 mA cm −2 compared to bare Li and TpBD‐COF/Li (without nitro). The full cells coupled with LiFePO 4 stably cycle 1000 times with a capacity retention of 91%. Hence, effectively optimizing electron structure by the donor‐acceptor (D‐A) effect provides a better platform to elevate the performance of LMB.
科研通智能强力驱动
Strongly Powered by AbleSci AI