Balanced Density Regression Network for Remote Sensing Object Counting

计算机科学 遥感 地质学
作者
Haojie Guo,Junyu Gao,Yuan Yuan
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-13 被引量:2
标识
DOI:10.1109/tgrs.2024.3402271
摘要

Counting objects in remote sensing is crucial for analyzing their distribution in images. Compared to surveillance perspectives, counting dense objects in remote sensing images is more challenging due to the smaller sizes of these targets. Recently, many methods utilize Gaussian convolution regression to estimate the count of dense objects in remote sensing images. However, most methods ignore the issue of regression imbalance inherent in Gaussian distribution, which is caused by the numerical differences in the center and edge regions. To tackle this challenge, we propose a Balanced Density Regression Network (BDRNet) to mitigate regression inaccuracies in Gaussian distributions due to numerical variances. Different from other methods, we divide the regression problem into two steps: first focusing on the regions of interest, then achieving precise regression. BDRNet consists of an Adaptive Kernel Weighting Attention (AKWA) mechanism and a Pixel-wise Occupancy Prediction (PwOE) module. Firstly, AKWA is designed to acquire accurate semantic feature information, which is obtained by learning the weights of dilated convolutions with different sizes of receptive fields. Secondly, the PwOE module applies Gaussian position embeddings to point labels to constrain the network to focus on the object region without increasing annotation cost. Finally, the integration of pixel-wise occupancy prediction features and kernel weighting features forms multi-layer cross-attention mechanisms, facilitating channel-level feature interaction and improving density regression predictions. Thus, the center and edge regions of the Gaussian kernel are treated equally, and the regression is balanced. Additionally, Extensive experiments on diverse datasets validate the effectiveness of the method, resulting in preferable performance. The code is available at: https://github.com/HotChieh/BDRNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
scanker1981完成签到,获得积分10
刚刚
喻踏歌完成签到,获得积分10
刚刚
bkagyin应助韭菜盒子采纳,获得10
1秒前
CY完成签到,获得积分10
1秒前
1秒前
大大大大宝凌完成签到,获得积分10
1秒前
SciGPT应助高大白山采纳,获得10
2秒前
NexusExplorer应助guimizhizhu11采纳,获得10
2秒前
李欣华发布了新的文献求助10
2秒前
2秒前
哈哈完成签到,获得积分10
3秒前
周易发布了新的文献求助20
3秒前
WSDD-ya发布了新的文献求助30
3秒前
IceT发布了新的文献求助10
4秒前
4秒前
4秒前
无花果应助官方v采纳,获得10
5秒前
洺全发布了新的文献求助10
5秒前
酷波er应助葡萄味的果茶采纳,获得10
6秒前
6秒前
汉堡包应助嘉深采纳,获得10
6秒前
陈小马完成签到,获得积分10
6秒前
从别后忆相逢完成签到 ,获得积分10
7秒前
7秒前
8秒前
以墨关注了科研通微信公众号
8秒前
Denmark发布了新的文献求助10
8秒前
爆米花应助科研通管家采纳,获得10
9秒前
nicenicer完成签到,获得积分10
9秒前
8R60d8应助科研通管家采纳,获得10
9秒前
9秒前
WSQ2130应助科研通管家采纳,获得30
9秒前
9秒前
10秒前
坚强访波完成签到,获得积分10
10秒前
齐半青完成签到,获得积分10
11秒前
cdercder应助吼吼哈哈采纳,获得10
11秒前
LIU完成签到 ,获得积分10
11秒前
xbchen完成签到,获得积分10
11秒前
12秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 2000
Animal Physiology 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3746640
求助须知:如何正确求助?哪些是违规求助? 3289434
关于积分的说明 10064680
捐赠科研通 3005779
什么是DOI,文献DOI怎么找? 1650416
邀请新用户注册赠送积分活动 785876
科研通“疑难数据库(出版商)”最低求助积分说明 751335