Balanced Density Regression Network for Remote Sensing Object Counting

计算机科学 遥感 地质学
作者
Haojie Guo,Junyu Gao,Yuan Yuan
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-13 被引量:2
标识
DOI:10.1109/tgrs.2024.3402271
摘要

Counting objects in remote sensing is crucial for analyzing their distribution in images. Compared to surveillance perspectives, counting dense objects in remote sensing images is more challenging due to the smaller sizes of these targets. Recently, many methods utilize Gaussian convolution regression to estimate the count of dense objects in remote sensing images. However, most methods ignore the issue of regression imbalance inherent in Gaussian distribution, which is caused by the numerical differences in the center and edge regions. To tackle this challenge, we propose a Balanced Density Regression Network (BDRNet) to mitigate regression inaccuracies in Gaussian distributions due to numerical variances. Different from other methods, we divide the regression problem into two steps: first focusing on the regions of interest, then achieving precise regression. BDRNet consists of an Adaptive Kernel Weighting Attention (AKWA) mechanism and a Pixel-wise Occupancy Prediction (PwOE) module. Firstly, AKWA is designed to acquire accurate semantic feature information, which is obtained by learning the weights of dilated convolutions with different sizes of receptive fields. Secondly, the PwOE module applies Gaussian position embeddings to point labels to constrain the network to focus on the object region without increasing annotation cost. Finally, the integration of pixel-wise occupancy prediction features and kernel weighting features forms multi-layer cross-attention mechanisms, facilitating channel-level feature interaction and improving density regression predictions. Thus, the center and edge regions of the Gaussian kernel are treated equally, and the regression is balanced. Additionally, Extensive experiments on diverse datasets validate the effectiveness of the method, resulting in preferable performance. The code is available at: https://github.com/HotChieh/BDRNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
苹果酸奶完成签到 ,获得积分10
刚刚
WANGCHU发布了新的文献求助10
1秒前
ZJY发布了新的文献求助10
1秒前
111完成签到 ,获得积分10
3秒前
orixero应助端庄的静曼采纳,获得10
4秒前
科研通AI6应助懦弱的智宸采纳,获得10
5秒前
阿鱼完成签到 ,获得积分10
7秒前
小鱼完成签到,获得积分10
8秒前
11秒前
zhuxiaonian完成签到,获得积分10
11秒前
wkk完成签到,获得积分10
11秒前
水云身发布了新的文献求助10
12秒前
小二郎应助刻苦的半双采纳,获得10
14秒前
hll发布了新的文献求助10
14秒前
ding应助炙热乌冬面采纳,获得10
15秒前
15秒前
15秒前
16秒前
18秒前
18秒前
19秒前
20秒前
zzz发布了新的文献求助10
20秒前
20秒前
科研通AI6应助大方仰采纳,获得10
23秒前
生动的丝应助坚定的西牛采纳,获得10
23秒前
qq关注了科研通微信公众号
23秒前
Lazyazy_完成签到 ,获得积分10
24秒前
张泽轩发布了新的文献求助10
25秒前
虚幻的彤发布了新的文献求助10
25秒前
旺旺小仙完成签到,获得积分10
25秒前
冷静芹菜发布了新的文献求助10
25秒前
26秒前
hopen完成签到 ,获得积分10
27秒前
zhuyuxin发布了新的文献求助10
27秒前
28秒前
28秒前
小礼品完成签到,获得积分10
29秒前
yaoyao发布了新的文献求助10
30秒前
斯文败类应助小麦采纳,获得10
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5288354
求助须知:如何正确求助?哪些是违规求助? 4440235
关于积分的说明 13824120
捐赠科研通 4322496
什么是DOI,文献DOI怎么找? 2372594
邀请新用户注册赠送积分活动 1368040
关于科研通互助平台的介绍 1331818