Balanced Density Regression Network for Remote Sensing Object Counting

计算机科学 遥感 地质学
作者
Haojie Guo,Junyu Gao,Yuan Yuan
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-13 被引量:10
标识
DOI:10.1109/tgrs.2024.3402271
摘要

Counting objects in remote sensing is crucial for analyzing their distribution in images. Compared to surveillance perspectives, counting dense objects in remote sensing images is more challenging due to the smaller sizes of these targets. Recently, many methods utilize Gaussian convolution regression to estimate the count of dense objects in remote sensing images. However, most methods ignore the issue of regression imbalance inherent in Gaussian distribution, which is caused by the numerical differences in the center and edge regions. To tackle this challenge, we propose a Balanced Density Regression Network (BDRNet) to mitigate regression inaccuracies in Gaussian distributions due to numerical variances. Different from other methods, we divide the regression problem into two steps: first focusing on the regions of interest, then achieving precise regression. BDRNet consists of an Adaptive Kernel Weighting Attention (AKWA) mechanism and a Pixel-wise Occupancy Prediction (PwOE) module. Firstly, AKWA is designed to acquire accurate semantic feature information, which is obtained by learning the weights of dilated convolutions with different sizes of receptive fields. Secondly, the PwOE module applies Gaussian position embeddings to point labels to constrain the network to focus on the object region without increasing annotation cost. Finally, the integration of pixel-wise occupancy prediction features and kernel weighting features forms multi-layer cross-attention mechanisms, facilitating channel-level feature interaction and improving density regression predictions. Thus, the center and edge regions of the Gaussian kernel are treated equally, and the regression is balanced. Additionally, Extensive experiments on diverse datasets validate the effectiveness of the method, resulting in preferable performance. The code is available at: https://github.com/HotChieh/BDRNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
情怀应助Qssai采纳,获得10
1秒前
笑相完成签到,获得积分10
1秒前
changnan发布了新的文献求助10
1秒前
2秒前
Ni发布了新的文献求助10
3秒前
4秒前
4秒前
呼呼发布了新的文献求助10
5秒前
hulian发布了新的文献求助10
6秒前
零可林应助悬铃木采纳,获得10
6秒前
7秒前
7秒前
7秒前
临床菜鸟完成签到 ,获得积分10
7秒前
8秒前
长情萤完成签到,获得积分10
8秒前
琢钰发布了新的文献求助10
8秒前
飞虎发布了新的文献求助10
9秒前
歪比巴卜发布了新的文献求助10
9秒前
阿良发布了新的文献求助10
10秒前
12秒前
12秒前
12秒前
13秒前
13秒前
天真璎完成签到,获得积分10
13秒前
靖宇发布了新的文献求助10
13秒前
曦颜发布了新的文献求助20
14秒前
Y神完成签到 ,获得积分10
15秒前
呼呼完成签到,获得积分10
15秒前
城南花已开完成签到,获得积分10
15秒前
汉堡包应助歪比巴卜采纳,获得10
15秒前
wyh3218完成签到 ,获得积分10
16秒前
顾矜应助孤独的德地采纳,获得10
16秒前
Qssai发布了新的文献求助10
19秒前
19秒前
小正发布了新的文献求助10
19秒前
嘻嘻发布了新的文献求助10
19秒前
21秒前
123完成签到,获得积分10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5589963
求助须知:如何正确求助?哪些是违规求助? 4674416
关于积分的说明 14793871
捐赠科研通 4629469
什么是DOI,文献DOI怎么找? 2532480
邀请新用户注册赠送积分活动 1501159
关于科研通互助平台的介绍 1468527