Balanced Density Regression Network for Remote Sensing Object Counting

计算机科学 遥感 地质学
作者
Haojie Guo,Junyu Gao,Yuan Yuan
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-13 被引量:2
标识
DOI:10.1109/tgrs.2024.3402271
摘要

Counting objects in remote sensing is crucial for analyzing their distribution in images. Compared to surveillance perspectives, counting dense objects in remote sensing images is more challenging due to the smaller sizes of these targets. Recently, many methods utilize Gaussian convolution regression to estimate the count of dense objects in remote sensing images. However, most methods ignore the issue of regression imbalance inherent in Gaussian distribution, which is caused by the numerical differences in the center and edge regions. To tackle this challenge, we propose a Balanced Density Regression Network (BDRNet) to mitigate regression inaccuracies in Gaussian distributions due to numerical variances. Different from other methods, we divide the regression problem into two steps: first focusing on the regions of interest, then achieving precise regression. BDRNet consists of an Adaptive Kernel Weighting Attention (AKWA) mechanism and a Pixel-wise Occupancy Prediction (PwOE) module. Firstly, AKWA is designed to acquire accurate semantic feature information, which is obtained by learning the weights of dilated convolutions with different sizes of receptive fields. Secondly, the PwOE module applies Gaussian position embeddings to point labels to constrain the network to focus on the object region without increasing annotation cost. Finally, the integration of pixel-wise occupancy prediction features and kernel weighting features forms multi-layer cross-attention mechanisms, facilitating channel-level feature interaction and improving density regression predictions. Thus, the center and edge regions of the Gaussian kernel are treated equally, and the regression is balanced. Additionally, Extensive experiments on diverse datasets validate the effectiveness of the method, resulting in preferable performance. The code is available at: https://github.com/HotChieh/BDRNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
3秒前
3秒前
来了完成签到,获得积分10
5秒前
粱忆寒发布了新的文献求助10
7秒前
8秒前
麻雀发布了新的文献求助30
8秒前
8秒前
大脑袋应助感动的念双采纳,获得30
10秒前
www完成签到 ,获得积分10
12秒前
隐形从梦完成签到 ,获得积分20
13秒前
CodeCraft应助Jero采纳,获得10
13秒前
14秒前
Zzzzzzz完成签到,获得积分10
14秒前
博修发布了新的文献求助10
15秒前
kingking完成签到,获得积分10
15秒前
17秒前
十二完成签到 ,获得积分10
18秒前
19秒前
QYF发布了新的文献求助10
19秒前
上官若男应助123采纳,获得10
20秒前
20秒前
脑洞疼应助吗喽采纳,获得10
21秒前
小蘑菇应助ANG采纳,获得10
21秒前
李健应助灯灯采纳,获得10
22秒前
CodeCraft应助大力云朵采纳,获得10
22秒前
CXS发布了新的文献求助10
23秒前
wxhzsdvv发布了新的文献求助10
24秒前
田様应助wen采纳,获得10
24秒前
肉肉发布了新的文献求助30
25秒前
25秒前
爆米花应助科研通管家采纳,获得10
26秒前
Liufgui应助科研通管家采纳,获得10
26秒前
26秒前
Owen应助科研通管家采纳,获得10
26秒前
wu8577应助科研通管家采纳,获得10
26秒前
深情安青应助科研通管家采纳,获得10
26秒前
华仔应助科研通管家采纳,获得10
26秒前
26秒前
情怀应助科研通管家采纳,获得10
26秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962340
求助须知:如何正确求助?哪些是违规求助? 3508487
关于积分的说明 11141064
捐赠科研通 3241149
什么是DOI,文献DOI怎么找? 1791353
邀请新用户注册赠送积分活动 872842
科研通“疑难数据库(出版商)”最低求助积分说明 803382