DeepHYDRA: A Hybrid Deep Learning and DBSCAN-Based Approach to Time-Series Anomaly Detection in Dynamically-Configured Systems

异常检测 计算机科学 系列(地层学) 时间序列 异常(物理) 数据库扫描 人工智能 深度学习 数据挖掘 机器学习 聚类分析 地质学 古生物学 物理 凝聚态物理 树冠聚类算法 相关聚类
作者
F. Stehle,Wainer Vandelli,Felix Zahn,Giuseppe Avolio,Holger Fröning
标识
DOI:10.1145/3650200.3656637
摘要

Anomaly detection in distributed systems such as High-Performance Computing (HPC) clusters is vital for early fault detection, performance optimisation, security monitoring, reliability in general but also operational insights. It enables proactive measures to address issues, ensuring system reliability, resource efficiency, and protection against potential threats. Deep Neural Networks have seen successful use in detecting long-term anomalies in multidimensional data, originating for instance from industrial or medical systems, or weather prediction. A downside of such methods is that they require a static input size, or lose data through cropping, sampling, or other dimensionality reduction methods, making deployment on systems with variability on monitored data channels, such as computing clusters difficult. To address these problems, we present DeepHYDRA (Deep Hybrid DBSCAN/Reduction-Based Anomaly Detection) which combines DBSCAN and learning-based anomaly detection. DBSCAN clustering is used to find point anomalies in time-series data, mitigating the risk of missing outliers through loss of information when reducing input data to a fixed number of channels. A deep learning-based time-series anomaly detection method is then applied to the reduced data in order to identify long-term outliers. This hybrid approach reduces the chances of missing anomalies that might be made indistinguishable from normal data by the reduction process, and likewise enables the algorithm to be scalable and tolerate partial system failures while retaining its detection capabilities. Using a subset of the well-known SMD dataset family, a modified variant of the Eclipse dataset, as well as an in-house dataset with a large variability in active data channels, made publicly available with this work, we furthermore analyse computational intensity, memory footprint, and activation counts. DeepHYDRA is shown to reliably detect different types of anomalies in both large and complex datasets. At the same time, the applied reduction approach is shown to enable real-time anomaly detection of a whole computing cluster while occupying proportionally miniscule compute resources, enabling its usage on existing systems without the need for hardware changes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李爱国应助徐乞采纳,获得10
9秒前
善学以致用应助徐乞采纳,获得10
9秒前
汉堡包应助徐乞采纳,获得10
9秒前
科研通AI2S应助徐乞采纳,获得10
9秒前
wanci应助徐乞采纳,获得10
9秒前
孙老师完成签到 ,获得积分10
10秒前
zhangjianzeng完成签到 ,获得积分10
16秒前
steven完成签到 ,获得积分10
24秒前
mzhang2完成签到 ,获得积分10
32秒前
小柯基学从零学起完成签到 ,获得积分10
41秒前
42秒前
44秒前
凌晨五点的完成签到,获得积分10
47秒前
奇妙淞发布了新的文献求助30
48秒前
49秒前
雨中行远发布了新的文献求助10
50秒前
武雨寒完成签到 ,获得积分20
56秒前
徐乞发布了新的文献求助10
57秒前
MOON完成签到,获得积分10
59秒前
1分钟前
stephen完成签到 ,获得积分10
1分钟前
111111完成签到,获得积分10
1分钟前
蕉鲁诺蕉巴纳完成签到,获得积分0
1分钟前
临时演员完成签到,获得积分0
1分钟前
皓轩完成签到 ,获得积分10
1分钟前
Polymer72应助科研通管家采纳,获得10
1分钟前
Skywings完成签到,获得积分10
1分钟前
1分钟前
文心同学完成签到,获得积分10
1分钟前
快乐的蓝完成签到 ,获得积分10
1分钟前
dreamwalk完成签到 ,获得积分10
1分钟前
清风完成签到 ,获得积分10
1分钟前
可爱的函函应助Skywings采纳,获得10
1分钟前
迅速的雨泽完成签到,获得积分20
1分钟前
1分钟前
hhh2018687完成签到,获得积分10
1分钟前
1分钟前
失眠的诗蕊完成签到,获得积分0
1分钟前
JUN完成签到,获得积分10
1分钟前
1分钟前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Treatise on Estuarine and Coastal Science (Second Edition) Volume 3: Biogeochemical Cycling 2024 500
Zeitschrift für Orient-Archäologie 500
Smith-Purcell Radiation 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3341900
求助须知:如何正确求助?哪些是违规求助? 2969256
关于积分的说明 8637992
捐赠科研通 2648930
什么是DOI,文献DOI怎么找? 1450469
科研通“疑难数据库(出版商)”最低求助积分说明 671917
邀请新用户注册赠送积分活动 660991