DeepHYDRA: A Hybrid Deep Learning and DBSCAN-Based Approach to Time-Series Anomaly Detection in Dynamically-Configured Systems

异常检测 计算机科学 系列(地层学) 时间序列 异常(物理) 数据库扫描 人工智能 深度学习 数据挖掘 机器学习 聚类分析 地质学 树冠聚类算法 物理 相关聚类 古生物学 凝聚态物理
作者
F. Stehle,Wainer Vandelli,Felix Zahn,Giuseppe Avolio,Holger Fröning
标识
DOI:10.1145/3650200.3656637
摘要

Anomaly detection in distributed systems such as High-Performance Computing (HPC) clusters is vital for early fault detection, performance optimisation, security monitoring, reliability in general but also operational insights. It enables proactive measures to address issues, ensuring system reliability, resource efficiency, and protection against potential threats. Deep Neural Networks have seen successful use in detecting long-term anomalies in multidimensional data, originating for instance from industrial or medical systems, or weather prediction. A downside of such methods is that they require a static input size, or lose data through cropping, sampling, or other dimensionality reduction methods, making deployment on systems with variability on monitored data channels, such as computing clusters difficult. To address these problems, we present DeepHYDRA (Deep Hybrid DBSCAN/Reduction-Based Anomaly Detection) which combines DBSCAN and learning-based anomaly detection. DBSCAN clustering is used to find point anomalies in time-series data, mitigating the risk of missing outliers through loss of information when reducing input data to a fixed number of channels. A deep learning-based time-series anomaly detection method is then applied to the reduced data in order to identify long-term outliers. This hybrid approach reduces the chances of missing anomalies that might be made indistinguishable from normal data by the reduction process, and likewise enables the algorithm to be scalable and tolerate partial system failures while retaining its detection capabilities. Using a subset of the well-known SMD dataset family, a modified variant of the Eclipse dataset, as well as an in-house dataset with a large variability in active data channels, made publicly available with this work, we furthermore analyse computational intensity, memory footprint, and activation counts. DeepHYDRA is shown to reliably detect different types of anomalies in both large and complex datasets. At the same time, the applied reduction approach is shown to enable real-time anomaly detection of a whole computing cluster while occupying proportionally miniscule compute resources, enabling its usage on existing systems without the need for hardware changes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
逆风起笔完成签到,获得积分10
2秒前
IvyLee发布了新的文献求助10
2秒前
汉堡包应助聪慧的正豪采纳,获得30
2秒前
3秒前
3秒前
RaynorHank发布了新的文献求助10
3秒前
今后应助奶油布丁采纳,获得10
4秒前
4秒前
大反应釜发布了新的文献求助10
5秒前
逆风起笔发布了新的文献求助10
5秒前
5秒前
王成健完成签到,获得积分10
5秒前
童绾绾发布了新的文献求助30
5秒前
哇哇哇哇我应助余空采纳,获得20
7秒前
7秒前
拾新发布了新的文献求助10
8秒前
Andy1201完成签到,获得积分10
9秒前
majiawei关注了科研通微信公众号
9秒前
香蕉觅云应助王成健采纳,获得10
9秒前
10秒前
10秒前
大反应釜发布了新的文献求助10
11秒前
无私的芹应助大力日记本采纳,获得10
11秒前
11秒前
现代的访曼应助煎蛋采纳,获得20
11秒前
12秒前
大反应釜发布了新的文献求助10
12秒前
大反应釜发布了新的文献求助10
13秒前
大反应釜发布了新的文献求助30
13秒前
13秒前
年轻馒头发布了新的文献求助50
14秒前
Candy完成签到 ,获得积分10
14秒前
大反应釜发布了新的文献求助10
15秒前
大反应釜发布了新的文献求助10
15秒前
16秒前
16秒前
充电宝应助糟糕的日记本采纳,获得10
17秒前
尹翊君完成签到,获得积分10
18秒前
18秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956215
求助须知:如何正确求助?哪些是违规求助? 3502433
关于积分的说明 11107557
捐赠科研通 3233009
什么是DOI,文献DOI怎么找? 1787120
邀请新用户注册赠送积分活动 870498
科研通“疑难数据库(出版商)”最低求助积分说明 802032