Small-sample Linear Profile Error Uncertainty Assessment Based On Grey System

样品(材料) 统计 计算机科学 数学 化学 色谱法
作者
Ke Zhang,Suan Chen,Ruiyu Zhang
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (8): 085019-085019
标识
DOI:10.1088/1361-6501/ad4bfa
摘要

Abstract The uncertainty assessment of the profile error of the cam profile, as defined in the national standard method, is difficult to carry out under conditions of small sample size and absence of probability distribution assumptions. This paper proposes a small-sample assessment model for the uncertainty of the profile error based on grey system. Firstly, the coordinate transformation is conducted using Vector Alignment Method to reduce systematic errors, and the non-uniform rational B-splines curve interpolation is utilized to fit the cam profile curve and perform error assessment. Subsequently, based on the error assessment results, Grey Information Measurement Model (GIMM) for the uncertainty of the profile error in small samples is established. This model employs Grey Relational Analysis to eliminate outliers and evaluates the uncertainty of the profile error by solving grey correlation coefficients. Maximum-Minimum Information Measure Method is used to assess the optimal sample size. Finally, numerical experiments and experimental tests were conducted on the uncertainty of camshaft profile error in automobiles. A total of 15 sets of profile data were compared with Guide to the Representation of Uncertainty in Measurement (GUM) and Monte Carlo Method (MCM) under different sample sizes. The results showed that GIMM achieved evaluation with only 8 sets of data samples under small sample and poor information conditions, with an uncertainty of 0.6338 μm, compared to 0.6346 μm for GUM and 0.6391 μm for MCM. The acceptance rate of GIMM reached 95.2%. This model outperforms other methods, providing a simplified and reliable assessment of cam profile error uncertainty.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
徐之易完成签到,获得积分20
刚刚
彤彤彤发布了新的文献求助10
1秒前
优美冰之完成签到 ,获得积分10
1秒前
灿星发布了新的文献求助10
1秒前
2秒前
落山姬完成签到,获得积分10
2秒前
充电宝应助无辜的发带采纳,获得10
3秒前
zys发布了新的文献求助10
3秒前
yyyy发布了新的文献求助10
3秒前
果子完成签到,获得积分10
4秒前
分歧者咋咋完成签到,获得积分10
4秒前
微笑可乐完成签到,获得积分10
4秒前
4秒前
长安完成签到,获得积分10
5秒前
金丝铁线发布了新的文献求助10
5秒前
bug完成签到,获得积分10
5秒前
小张完成签到,获得积分10
6秒前
6秒前
6秒前
xinlei2023完成签到,获得积分10
7秒前
7秒前
傲娇黄豆发布了新的文献求助10
7秒前
8秒前
自然发布了新的文献求助10
8秒前
科研通AI5应助ohm采纳,获得10
9秒前
酷波er应助自由的笑旋采纳,获得10
9秒前
沉静的曼荷完成签到,获得积分20
9秒前
努力的小老虎完成签到,获得积分20
10秒前
10秒前
臻君完成签到,获得积分10
11秒前
yyan给yyan的求助进行了留言
11秒前
qqqqq完成签到,获得积分10
11秒前
潇洒的灵竹完成签到,获得积分20
11秒前
赵铁柱完成签到,获得积分10
11秒前
洞两完成签到,获得积分10
11秒前
海信与完成签到,获得积分10
11秒前
11秒前
Tina完成签到,获得积分10
12秒前
庸人自扰发布了新的文献求助10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
On the identity and nomenclature of a climbing bamboo Melocalamus macclellandii 610
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3556318
求助须知:如何正确求助?哪些是违规求助? 3131869
关于积分的说明 9393671
捐赠科研通 2831942
什么是DOI,文献DOI怎么找? 1556591
邀请新用户注册赠送积分活动 726696
科研通“疑难数据库(出版商)”最低求助积分说明 716018