HANSynergy: Heterogeneous Graph Attention Network for Drug Synergy Prediction

计算机科学 异构网络 交互网络 图形 公共化学 机器学习 人工智能 数据挖掘 计算生物学 理论计算机科学 生物 生物化学 电信 基因 无线网络 无线
作者
Ning Cheng,Li Wang,Yiping Liu,Bosheng Song,Changsong Ding
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:64 (10): 4334-4347 被引量:5
标识
DOI:10.1021/acs.jcim.4c00003
摘要

Drug synergy therapy is a promising strategy for cancer treatment. However, the extensive variety of available drugs and the time-intensive process of determining effective drug combinations through clinical trials pose significant challenges. It requires a reliable method for the rapid and precise selection of drug synergies. In response, various computational strategies have been developed for predicting drug synergies, yet the exploitation of heterogeneous biological network features remains underexplored. In this study, we construct a heterogeneous graph that encompasses diverse biological entities and interactions, utilizing rich data sets from sources, such as DrugCombDB, PubChem, UniProt, and cancer cell line encyclopedia (CCLE). We initialize node feature representations and introduce a novel virtual node to enhance drug representation. Our proposed method, the heterogeneous graph attention network for drug-drug synergy prediction (HANSynergy), has been experimentally validated to demonstrate that the heterogeneous graph attention network can extract key node features, efficiently harness the diversity of information, and further enhance network functionality through the incorporation of a multihead attention mechanism. In the comparative experiment, the highest accuracy (Acc) and area under the curve (AUC) are 0.877 and 0.947, respectively, in DrugCombDB_early data set, demonstrating the superiority of HANSynergy over the competing methods. Moreover, protein-protein interactions are important in understanding the mechanism of action of drugs. The heterogeneous attention mechanism facilitates protein-protein interaction analysis. By analyzing the changes of attention weight before and after heterogeneous network training, we investigated proteins that may be associated with drug combinations. Additionally, case studies align our findings with existing research, underscoring the potential of HANSynergy in drug synergy prediction. This advancement not only contributes to the burgeoning field of drug synergy prediction but also holds the potential to provide valuable insights and uncover new drug synergies for combating cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Deannn778完成签到,获得积分10
刚刚
花笙完成签到,获得积分10
1秒前
2秒前
3秒前
4秒前
羊一完成签到 ,获得积分10
4秒前
tulips发布了新的文献求助10
5秒前
你嵙这个期刊没买完成签到 ,获得积分10
5秒前
7秒前
无为发布了新的文献求助10
8秒前
爱听歌的冷安完成签到,获得积分10
8秒前
9秒前
拟好啊完成签到,获得积分10
10秒前
科目三应助冷傲曼冬采纳,获得10
10秒前
zlk完成签到 ,获得积分10
12秒前
LC完成签到 ,获得积分10
12秒前
拟好啊发布了新的文献求助10
14秒前
16秒前
16秒前
16秒前
你好完成签到,获得积分10
17秒前
20秒前
harry发布了新的文献求助10
20秒前
21秒前
21秒前
22秒前
小詹同学完成签到 ,获得积分10
22秒前
如意元霜关注了科研通微信公众号
25秒前
25秒前
28秒前
DJsky123发布了新的文献求助10
28秒前
31秒前
34秒前
赵卫星发布了新的文献求助10
35秒前
阿尔宙斯发布了新的文献求助10
39秒前
40秒前
万能图书馆应助赵卫星采纳,获得10
41秒前
葵花发布了新的文献求助10
44秒前
46秒前
大聪明完成签到,获得积分10
47秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5298643
求助须知:如何正确求助?哪些是违规求助? 4447181
关于积分的说明 13841710
捐赠科研通 4332612
什么是DOI,文献DOI怎么找? 2378257
邀请新用户注册赠送积分活动 1373533
关于科研通互助平台的介绍 1339134