HANSynergy: Heterogeneous Graph Attention Network for Drug Synergy Prediction

计算机科学 异构网络 交互网络 图形 公共化学 机器学习 人工智能 数据挖掘 计算生物学 理论计算机科学 生物 生物化学 电信 基因 无线网络 无线
作者
Ning Cheng,Li Wang,Yiping Liu,Bosheng Song,Changsong Ding
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:64 (10): 4334-4347
标识
DOI:10.1021/acs.jcim.4c00003
摘要

Drug synergy therapy is a promising strategy for cancer treatment. However, the extensive variety of available drugs and the time-intensive process of determining effective drug combinations through clinical trials pose significant challenges. It requires a reliable method for the rapid and precise selection of drug synergies. In response, various computational strategies have been developed for predicting drug synergies, yet the exploitation of heterogeneous biological network features remains underexplored. In this study, we construct a heterogeneous graph that encompasses diverse biological entities and interactions, utilizing rich data sets from sources, such as DrugCombDB, PubChem, UniProt, and cancer cell line encyclopedia (CCLE). We initialize node feature representations and introduce a novel virtual node to enhance drug representation. Our proposed method, the heterogeneous graph attention network for drug–drug synergy prediction (HANSynergy), has been experimentally validated to demonstrate that the heterogeneous graph attention network can extract key node features, efficiently harness the diversity of information, and further enhance network functionality through the incorporation of a multihead attention mechanism. In the comparative experiment, the highest accuracy (Acc) and area under the curve (AUC) are 0.877 and 0.947, respectively, in DrugCombDB_early data set, demonstrating the superiority of HANSynergy over the competing methods. Moreover, protein–protein interactions are important in understanding the mechanism of action of drugs. The heterogeneous attention mechanism facilitates protein–protein interaction analysis. By analyzing the changes of attention weight before and after heterogeneous network training, we investigated proteins that may be associated with drug combinations. Additionally, case studies align our findings with existing research, underscoring the potential of HANSynergy in drug synergy prediction. This advancement not only contributes to the burgeoning field of drug synergy prediction but also holds the potential to provide valuable insights and uncover new drug synergies for combating cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
秋风暖暖发布了新的文献求助10
1秒前
爆米花应助萧萧萧采纳,获得10
2秒前
微笑不可完成签到 ,获得积分10
2秒前
带着太阳去旅行完成签到,获得积分20
2秒前
千日粉发布了新的文献求助10
3秒前
3秒前
edtaa完成签到,获得积分10
4秒前
天天开心完成签到,获得积分10
4秒前
漱泉枕石发布了新的文献求助10
4秒前
4秒前
5秒前
6秒前
xu完成签到,获得积分20
6秒前
bob完成签到,获得积分10
9秒前
9秒前
田様应助鲤鱼烙采纳,获得10
10秒前
Sea_U应助Sylvie采纳,获得10
10秒前
张立敏发布了新的文献求助10
11秒前
淼队发布了新的文献求助10
11秒前
共享精神应助千日粉采纳,获得10
12秒前
长情萤发布了新的文献求助10
12秒前
12秒前
WIK发布了新的文献求助20
15秒前
15秒前
KBRS完成签到,获得积分10
15秒前
暮倦完成签到,获得积分20
16秒前
16秒前
量子星尘发布了新的文献求助10
16秒前
17秒前
lynn221204完成签到,获得积分10
18秒前
LIHONGJIE完成签到,获得积分20
18秒前
zhangxuhns发布了新的文献求助10
19秒前
19秒前
21秒前
21秒前
22秒前
暮倦发布了新的文献求助10
22秒前
关关发布了新的文献求助10
23秒前
24秒前
hhc发布了新的文献求助10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
Why Neuroscience Matters in the Classroom 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5048621
求助须知:如何正确求助?哪些是违规求助? 4276972
关于积分的说明 13332058
捐赠科研通 4091541
什么是DOI,文献DOI怎么找? 2239084
邀请新用户注册赠送积分活动 1245992
关于科研通互助平台的介绍 1174532