HANSynergy: Heterogeneous Graph Attention Network for Drug Synergy Prediction

计算机科学 异构网络 交互网络 图形 公共化学 机器学习 人工智能 数据挖掘 计算生物学 理论计算机科学 生物 电信 生物化学 无线网络 无线 基因
作者
Ning Cheng,Li Wang,Yiping Liu,Bosheng Song,Changsong Ding
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:64 (10): 4334-4347
标识
DOI:10.1021/acs.jcim.4c00003
摘要

Drug synergy therapy is a promising strategy for cancer treatment. However, the extensive variety of available drugs and the time-intensive process of determining effective drug combinations through clinical trials pose significant challenges. It requires a reliable method for the rapid and precise selection of drug synergies. In response, various computational strategies have been developed for predicting drug synergies, yet the exploitation of heterogeneous biological network features remains underexplored. In this study, we construct a heterogeneous graph that encompasses diverse biological entities and interactions, utilizing rich data sets from sources, such as DrugCombDB, PubChem, UniProt, and cancer cell line encyclopedia (CCLE). We initialize node feature representations and introduce a novel virtual node to enhance drug representation. Our proposed method, the heterogeneous graph attention network for drug–drug synergy prediction (HANSynergy), has been experimentally validated to demonstrate that the heterogeneous graph attention network can extract key node features, efficiently harness the diversity of information, and further enhance network functionality through the incorporation of a multihead attention mechanism. In the comparative experiment, the highest accuracy (Acc) and area under the curve (AUC) are 0.877 and 0.947, respectively, in DrugCombDB_early data set, demonstrating the superiority of HANSynergy over the competing methods. Moreover, protein–protein interactions are important in understanding the mechanism of action of drugs. The heterogeneous attention mechanism facilitates protein–protein interaction analysis. By analyzing the changes of attention weight before and after heterogeneous network training, we investigated proteins that may be associated with drug combinations. Additionally, case studies align our findings with existing research, underscoring the potential of HANSynergy in drug synergy prediction. This advancement not only contributes to the burgeoning field of drug synergy prediction but also holds the potential to provide valuable insights and uncover new drug synergies for combating cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
anfly完成签到,获得积分10
刚刚
刚刚
yecheng完成签到,获得积分10
刚刚
小美完成签到 ,获得积分10
1秒前
Vyasa完成签到,获得积分10
2秒前
成就飞柏发布了新的文献求助10
3秒前
ice7完成签到,获得积分10
4秒前
CHAosLoopy应助和谐的敏采纳,获得10
5秒前
科研通AI2S应助小xy采纳,获得10
5秒前
mylaodao完成签到,获得积分0
6秒前
7秒前
7秒前
zy完成签到,获得积分10
9秒前
前前前世完成签到,获得积分10
10秒前
Sun发布了新的文献求助10
11秒前
11秒前
12秒前
善学以致用应助jiang采纳,获得20
12秒前
情怀应助jiangjiang采纳,获得10
13秒前
量子星尘发布了新的文献求助10
13秒前
甜美宛儿完成签到,获得积分10
14秒前
科目三应助xqxqxqxqxqx采纳,获得10
14秒前
15秒前
16秒前
周常通完成签到,获得积分10
17秒前
怕黑的灯泡完成签到,获得积分10
20秒前
smile发布了新的文献求助10
20秒前
凉凉应助木头桌子采纳,获得10
20秒前
欧气青年完成签到,获得积分10
21秒前
Jm完成签到,获得积分10
22秒前
李爱国应助成就的绮南采纳,获得10
23秒前
23秒前
smile完成签到,获得积分10
27秒前
28秒前
傻傻的听安完成签到,获得积分10
29秒前
30秒前
川哥完成签到,获得积分10
30秒前
llchen完成签到,获得积分10
31秒前
INNE完成签到,获得积分10
31秒前
朴素玉米发布了新的文献求助10
32秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Atlas of Interventional Pain Management 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4010774
求助须知:如何正确求助?哪些是违规求助? 3550436
关于积分的说明 11305765
捐赠科研通 3284800
什么是DOI,文献DOI怎么找? 1810853
邀请新用户注册赠送积分活动 886574
科研通“疑难数据库(出版商)”最低求助积分说明 811499