HANSynergy: Heterogeneous Graph Attention Network for Drug Synergy Prediction

计算机科学 异构网络 交互网络 图形 公共化学 机器学习 人工智能 数据挖掘 计算生物学 理论计算机科学 生物 电信 生物化学 无线网络 无线 基因
作者
Ning Cheng,Li Wang,Yiping Liu,Bosheng Song,Changsong Ding
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:64 (10): 4334-4347
标识
DOI:10.1021/acs.jcim.4c00003
摘要

Drug synergy therapy is a promising strategy for cancer treatment. However, the extensive variety of available drugs and the time-intensive process of determining effective drug combinations through clinical trials pose significant challenges. It requires a reliable method for the rapid and precise selection of drug synergies. In response, various computational strategies have been developed for predicting drug synergies, yet the exploitation of heterogeneous biological network features remains underexplored. In this study, we construct a heterogeneous graph that encompasses diverse biological entities and interactions, utilizing rich data sets from sources, such as DrugCombDB, PubChem, UniProt, and cancer cell line encyclopedia (CCLE). We initialize node feature representations and introduce a novel virtual node to enhance drug representation. Our proposed method, the heterogeneous graph attention network for drug–drug synergy prediction (HANSynergy), has been experimentally validated to demonstrate that the heterogeneous graph attention network can extract key node features, efficiently harness the diversity of information, and further enhance network functionality through the incorporation of a multihead attention mechanism. In the comparative experiment, the highest accuracy (Acc) and area under the curve (AUC) are 0.877 and 0.947, respectively, in DrugCombDB_early data set, demonstrating the superiority of HANSynergy over the competing methods. Moreover, protein–protein interactions are important in understanding the mechanism of action of drugs. The heterogeneous attention mechanism facilitates protein–protein interaction analysis. By analyzing the changes of attention weight before and after heterogeneous network training, we investigated proteins that may be associated with drug combinations. Additionally, case studies align our findings with existing research, underscoring the potential of HANSynergy in drug synergy prediction. This advancement not only contributes to the burgeoning field of drug synergy prediction but also holds the potential to provide valuable insights and uncover new drug synergies for combating cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
无限的绿真完成签到,获得积分10
2秒前
qikaka完成签到,获得积分10
3秒前
3秒前
4秒前
4秒前
iTaciturne完成签到,获得积分10
4秒前
高兴海燕发布了新的文献求助10
4秒前
va奕完成签到,获得积分10
7秒前
顾矜应助陶渊明采纳,获得10
8秒前
大猫爬树完成签到,获得积分10
9秒前
益达男友完成签到,获得积分10
9秒前
超级蛙咔完成签到,获得积分10
10秒前
10秒前
10秒前
柴六斤完成签到 ,获得积分10
10秒前
小鱼发布了新的文献求助20
10秒前
11秒前
树林红了完成签到,获得积分10
12秒前
落寞的无施完成签到,获得积分10
13秒前
ww完成签到,获得积分10
14秒前
5114完成签到,获得积分10
15秒前
就好发布了新的文献求助10
16秒前
17秒前
18秒前
今后应助tracy采纳,获得10
18秒前
AAAAA完成签到,获得积分20
19秒前
小至发布了新的文献求助10
19秒前
李爱国应助Linda采纳,获得10
21秒前
张中阳发布了新的文献求助10
21秒前
陶渊明发布了新的文献求助10
22秒前
时倾完成签到 ,获得积分10
23秒前
JinwenShi完成签到,获得积分10
23秒前
充电宝应助wg采纳,获得10
23秒前
okko完成签到,获得积分10
25秒前
25秒前
26秒前
11完成签到,获得积分10
26秒前
Orange应助小鱼采纳,获得10
26秒前
思源应助就好采纳,获得10
27秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3155997
求助须知:如何正确求助?哪些是违规求助? 2807353
关于积分的说明 7872795
捐赠科研通 2465725
什么是DOI,文献DOI怎么找? 1312328
科研通“疑难数据库(出版商)”最低求助积分说明 630049
版权声明 601905