HANSynergy: Heterogeneous Graph Attention Network for Drug Synergy Prediction

计算机科学 异构网络 交互网络 图形 公共化学 机器学习 人工智能 数据挖掘 计算生物学 理论计算机科学 生物 生物化学 电信 基因 无线网络 无线
作者
Ning Cheng,Li Wang,Yiping Liu,Bosheng Song,Changsong Ding
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:64 (10): 4334-4347 被引量:5
标识
DOI:10.1021/acs.jcim.4c00003
摘要

Drug synergy therapy is a promising strategy for cancer treatment. However, the extensive variety of available drugs and the time-intensive process of determining effective drug combinations through clinical trials pose significant challenges. It requires a reliable method for the rapid and precise selection of drug synergies. In response, various computational strategies have been developed for predicting drug synergies, yet the exploitation of heterogeneous biological network features remains underexplored. In this study, we construct a heterogeneous graph that encompasses diverse biological entities and interactions, utilizing rich data sets from sources, such as DrugCombDB, PubChem, UniProt, and cancer cell line encyclopedia (CCLE). We initialize node feature representations and introduce a novel virtual node to enhance drug representation. Our proposed method, the heterogeneous graph attention network for drug-drug synergy prediction (HANSynergy), has been experimentally validated to demonstrate that the heterogeneous graph attention network can extract key node features, efficiently harness the diversity of information, and further enhance network functionality through the incorporation of a multihead attention mechanism. In the comparative experiment, the highest accuracy (Acc) and area under the curve (AUC) are 0.877 and 0.947, respectively, in DrugCombDB_early data set, demonstrating the superiority of HANSynergy over the competing methods. Moreover, protein-protein interactions are important in understanding the mechanism of action of drugs. The heterogeneous attention mechanism facilitates protein-protein interaction analysis. By analyzing the changes of attention weight before and after heterogeneous network training, we investigated proteins that may be associated with drug combinations. Additionally, case studies align our findings with existing research, underscoring the potential of HANSynergy in drug synergy prediction. This advancement not only contributes to the burgeoning field of drug synergy prediction but also holds the potential to provide valuable insights and uncover new drug synergies for combating cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lzzmy发布了新的文献求助10
1秒前
guofurong发布了新的文献求助10
2秒前
1234567发布了新的文献求助10
5秒前
8秒前
CH完成签到,获得积分10
9秒前
9秒前
十三完成签到 ,获得积分10
10秒前
科研通AI6应助Blassom采纳,获得10
10秒前
张张完成签到 ,获得积分10
10秒前
香蕉以菱发布了新的文献求助10
11秒前
jingyuemingqiu完成签到 ,获得积分10
12秒前
spirit发布了新的文献求助10
12秒前
13秒前
lzzmy完成签到,获得积分10
13秒前
斯文败类应助科研通管家采纳,获得10
15秒前
桐桐应助科研通管家采纳,获得20
15秒前
小二郎应助科研通管家采纳,获得10
15秒前
爆米花应助科研通管家采纳,获得10
15秒前
浮游应助科研通管家采纳,获得10
15秒前
Akim应助科研通管家采纳,获得10
15秒前
浮游应助科研通管家采纳,获得10
16秒前
SciGPT应助科研通管家采纳,获得10
16秒前
英姑应助科研通管家采纳,获得10
16秒前
科研通AI6应助科研通管家采纳,获得10
16秒前
情怀应助科研通管家采纳,获得10
16秒前
Tourist应助科研通管家采纳,获得10
16秒前
科研通AI6应助科研通管家采纳,获得10
16秒前
NexusExplorer应助科研通管家采纳,获得10
16秒前
orixero应助科研通管家采纳,获得10
16秒前
16秒前
浮游应助科研通管家采纳,获得10
16秒前
16秒前
16秒前
123完成签到,获得积分10
16秒前
楠瓜完成签到,获得积分10
17秒前
典雅的夜梦完成签到 ,获得积分10
18秒前
Silole发布了新的文献求助10
18秒前
21秒前
哈基米德应助spirit采纳,获得20
24秒前
yz123发布了新的文献求助10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Corrosion and corrosion control 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5373703
求助须知:如何正确求助?哪些是违规求助? 4499730
关于积分的说明 14007113
捐赠科研通 4406667
什么是DOI,文献DOI怎么找? 2420557
邀请新用户注册赠送积分活动 1413377
关于科研通互助平台的介绍 1389933