Division gets better: Learning brightness-aware and detail-sensitive representations for low-light image enhancement

亮度 师(数学) 计算机科学 人工智能 图像(数学) 计算机视觉 物理 光学 数学 算术
作者
Huake Wang,Xiaoyang Yan,Xingsong Hou,Junhui Li,Yujie Dun,Kaibing Zhang
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:299: 111958-111958
标识
DOI:10.1016/j.knosys.2024.111958
摘要

Low-light image enhancement strives to improve the contrast, adjust the visibility, and restore the distortion in color and texture. Existing methods usually pay more attention to improving the visibility and contrast via increasing the lightness of low-light images, while disregarding the significance of color and texture restoration for high-quality images. Against above issue, we propose a novel luminance and chrominance dual branch network, termed LCDBNet, for low-light image enhancement, which divides low-light image enhancement into two sub-tasks, e.g., luminance adjustment and chrominance restoration. Specifically, LCDBNet is composed of two branches, namely luminance adjustment network (LAN) and chrominance restoration network (CRN). In LAN, we design a global and local aggregation block (GLAB) to extract brightness-aware features, which consists of a transformer branch and a dual attention branch to model long-range dependency and local attention correlation. In CRN, we introduce wavelet transform to obtain high-frequency detail information. Finally, a fusion network is designed to blend their learned features to produce visually impressive images. Extensive experiments conducted on seven benchmark datasets validate the effectiveness of our proposed LCDBNet, and the results manifest that LCDBNet achieves superior performance in terms of multiple reference/non-reference quality evaluators compared to other state-of-the-art competitors. Our code and pretrained model will be available.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
隐形曼青应助聪慧勒采纳,获得10
刚刚
早点毕业发布了新的文献求助10
2秒前
壮观戾发布了新的文献求助10
5秒前
6秒前
存钱买馒头完成签到,获得积分10
6秒前
闪闪的梦柏完成签到,获得积分10
8秒前
慕青应助微笑的语芙采纳,获得10
8秒前
徐芸萍完成签到,获得积分10
10秒前
秋半梦发布了新的文献求助30
10秒前
10秒前
11秒前
单纯寒荷完成签到 ,获得积分10
11秒前
12秒前
冲冲冲完成签到,获得积分10
13秒前
13秒前
13秒前
14秒前
14秒前
15秒前
orixero应助秋秋采纳,获得10
15秒前
无花果应助之星君采纳,获得10
16秒前
HanXiaodai完成签到,获得积分10
17秒前
Soleil发布了新的文献求助100
17秒前
JR关注了科研通微信公众号
18秒前
19秒前
20秒前
运医瘦瘦花生完成签到,获得积分10
20秒前
狸追发布了新的文献求助10
21秒前
21秒前
能干太清完成签到,获得积分10
21秒前
梅槿完成签到 ,获得积分10
22秒前
同尘完成签到 ,获得积分10
22秒前
早点毕业完成签到,获得积分10
23秒前
莫斯卡托发布了新的文献求助10
23秒前
研友_8Qxp7Z完成签到,获得积分10
24秒前
24秒前
24秒前
刻苦冷菱发布了新的文献求助10
24秒前
NexusExplorer应助Zp采纳,获得10
26秒前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
宽禁带半导体紫外光电探测器 388
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3142116
求助须知:如何正确求助?哪些是违规求助? 2793077
关于积分的说明 7805362
捐赠科研通 2449427
什么是DOI,文献DOI怎么找? 1303232
科研通“疑难数据库(出版商)”最低求助积分说明 626807
版权声明 601291